People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bender, Marcel
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Reprocessable carbon fiber vitrimer composites: Reclamation and reformatting of carbon fibers for second generation composite materials
- 2024Effect of different weft-knitted structures on the mechanical performance of bio-based flexible compositescitations
- 2023Inferring material properties from FRP processes via sim-to-real learningcitations
- 2023Thermally Latent Bases in Dynamic Covalent Polymer Networks and their Emerging Applicationscitations
- 2023Effect of Binder Activation on in-Plane Capillary Flow in Multilayer Stacks of Carbon Fiber Fabrics
- 2023Novel test-rig for compaction behaviour analysis of textile reinforcements for improved RTM-process replicationcitations
- 2022Gel Point Determination in Resin Transfer Molding Process with Fiber Bragg Grating Inscribed in Side-Hole Elliptical Core Optical Fibercitations
- 2022Compressibility and Relaxation Characteristics of Bindered Non-Crimp-Fabrics Under Temperature and Injection Fluid Influence
- 2021In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fibercitations
Places of action
Organizations | Location | People |
---|
article
In-Plane Strain Measurement in Composite Structures with Fiber Bragg Grating Written in Side-Hole Elliptical Core Optical Fiber
Abstract
In this paper, the application of a fiber Bragg grating written in a highly birefringent side-hole elliptical core optical fiber for two-axial strain measurement is presented. Hybrid optical fiber structures achieved by combining large side-holes and elliptical core result in a very high birefringence of 1 × 10−3 and thus high initial Bragg peak spectral separation of 1.16 nm, as well as a very high transverse force sensitivity, of up to 650 pm/(N/mm) or even −1150 pm/(N/mm), depending on the fiber orientation with respect to the applied force. Due to the ~22 %m/m GeO2 concentration in the core the fiber being highly photosensitive, which significantly simplifies FBG fabrication by UV illumination without the need for prior hydrogen loading, which worsens thermal stability. Finally, the developed FBGs written in the highly birefringent side-hole elliptical core optical fiber were embedded in the square composite plates and applied for strain measurements. Tests of two-directional four-point bending have shown usability of such FBG for two-axial in-plane strain measurement with a single FBG in iso-thermal conditions.