Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jonsén, Pär

  • Google
  • 22
  • 44
  • 100

Luossavaara-Kiirunavaara Aktiebolag (Sweden)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022A statistical DEM approach for modelling heterogeneous brittle materials8citations
  • 2022Impact crash tests of high-strength steels using 3D high-speed digital image correlation and finite element analysiscitations
  • 2021Stating Failure Modelling Limitations of High Strength Sheets: Implications to Sheet Metal Forming10citations
  • 2021Toughness properties at multi-layer laser beam welding of high-strength steels2citations
  • 2020Ultra high strength steel sandwich for lightweight applications16citations
  • 2018Experimental and PFEM-simulations of residual stresses from turning tests of a cylindrical Ti-6Al-4V shaft9citations
  • 2018Defect characterization of electron beam melted Ti-6Al-4V and Alloy 718 with X-ray microtomography19citations
  • 2017A fracture mechanics approach to develop high crash resistant microstructures by press hardeningcitations
  • 2017Fracture mechanics based modelling of failure in advanced high strength steelscitations
  • 2017Determination of the essential work of fracture at high strain ratescitations
  • 2015Numerical modeling of metal cutting processes using the particle finite element method (PFEM) and a physically based plasticity modelcitations
  • 2013Compressive Properties of High Velocity Pressed Iron Powder at High Strain Ratescitations
  • 2013Strain Rate Dependent Constitutive Model with Failure for Impact Loading of Metal Powdercitations
  • 2011Simulation of stresses in iron ore pellets for confined compression-tests using the multi particle finite element methodcitations
  • 2011Modelling of internal stresses in grinding chargescitations
  • 2011Simulation of charge and structure behaviour in a tumbling millcitations
  • 2010Charge and structure behaviour in a tumbling millcitations
  • 2010Prediction of mill structure behaviour in a tumbling millcitations
  • 2009Evaluation of dynamic compressive properties of PLA polymer blends using split Hopkinson pressure bar13citations
  • 2009The effect of impact compaction on surface quality of powder discs1citations
  • 2007Green body behaviour of high velocity pressed metal powder22citations
  • 2006Fracture and stress in powder compactscitations

Places of action

Chart of shared publication
Kajberg, Jörgen
3 / 8 shared
Wessling, Albin
1 / 3 shared
Larsson, Simon
3 / 4 shared
Jonsson, Simon
1 / 3 shared
Casellas, Daniel
4 / 22 shared
Sandin, Olle
1 / 3 shared
Frómeta, David
4 / 9 shared
Volpp, Joerg
1 / 7 shared
Ramasamy, Anandkumar
1 / 3 shared
Kalfsbeek, Bert
1 / 2 shared
Hammarberg, Samuel
1 / 2 shared
Berglund, Johan
1 / 8 shared
Sveboda, Ales
1 / 1 shared
Rodríguez Prieto, Juan Manuel
1 / 2 shared
Holmberg, Jonas
1 / 8 shared
Antti, Marta-Lena
1 / 9 shared
Pederson, Robert
1 / 23 shared
Åkerfeldt, Pia
1 / 21 shared
Forsberg, Fredrik
1 / 9 shared
Puyoo, Geraldine
1 / 1 shared
Neikter, Magnus
1 / 12 shared
Oldenburg, Mats
3 / 19 shared
Golling, Stefan
3 / 10 shared
Molas, Silvia
1 / 1 shared
Lara, Toni
1 / 1 shared
Granström, Jan
1 / 1 shared
Svoboda, Ales
1 / 2 shared
Rodriguez Prieto, Juan Manuel
1 / 1 shared
Häggblad, Hans-Åke
8 / 10 shared
Kato, Hidinori
2 / 2 shared
Ogura, Takashi
2 / 2 shared
Nishida, Masahiro
3 / 4 shared
Gustafsson, Gustaf
3 / 4 shared
Pålsson, Bertil
4 / 5 shared
Tano, Kent
3 / 5 shared
Berggren, Andreas
3 / 3 shared
Todo, M.
1 / 1 shared
Takayama, T.
1 / 8 shared
Yamaguchi, M.
1 / 3 shared
Mishida, Masahiro
1 / 1 shared
Troive, Lars
1 / 2 shared
Allroth, S.
1 / 1 shared
Skoglund, P.
1 / 2 shared
Furuberg, J.
1 / 1 shared
Chart of publication period
2022
2021
2020
2018
2017
2015
2013
2011
2010
2009
2007
2006

Co-Authors (by relevance)

  • Kajberg, Jörgen
  • Wessling, Albin
  • Larsson, Simon
  • Jonsson, Simon
  • Casellas, Daniel
  • Sandin, Olle
  • Frómeta, David
  • Volpp, Joerg
  • Ramasamy, Anandkumar
  • Kalfsbeek, Bert
  • Hammarberg, Samuel
  • Berglund, Johan
  • Sveboda, Ales
  • Rodríguez Prieto, Juan Manuel
  • Holmberg, Jonas
  • Antti, Marta-Lena
  • Pederson, Robert
  • Åkerfeldt, Pia
  • Forsberg, Fredrik
  • Puyoo, Geraldine
  • Neikter, Magnus
  • Oldenburg, Mats
  • Golling, Stefan
  • Molas, Silvia
  • Lara, Toni
  • Granström, Jan
  • Svoboda, Ales
  • Rodriguez Prieto, Juan Manuel
  • Häggblad, Hans-Åke
  • Kato, Hidinori
  • Ogura, Takashi
  • Nishida, Masahiro
  • Gustafsson, Gustaf
  • Pålsson, Bertil
  • Tano, Kent
  • Berggren, Andreas
  • Todo, M.
  • Takayama, T.
  • Yamaguchi, M.
  • Mishida, Masahiro
  • Troive, Lars
  • Allroth, S.
  • Skoglund, P.
  • Furuberg, J.
OrganizationsLocationPeople

article

Stating Failure Modelling Limitations of High Strength Sheets: Implications to Sheet Metal Forming

  • Casellas, Daniel
  • Sandin, Olle
  • Frómeta, David
  • Jonsén, Pär
Abstract

<jats:p>This article discusses the fracture modelling accuracy of strain-driven ductile fracture models when introducing damage of high strength sheet steel. Numerical modelling of well-known fracture mechanical tests was conducted using a failure and damage model to control damage and fracture evolution. A thorough validation of the simulation results was conducted against results from laboratory testing. Such validations show that the damage and failure model is suited for modelling of material failure and fracture evolution of specimens without damage. However, pre-damaged specimens show less correlation as the damage and failure model over-predicts the displacement at crack initiation with an average of 28%. Consequently, the results in this article show the need for an extension of the damage and failure model that accounts for the fracture mechanisms at the crack tip. Such extension would aid in the improvement of fracture mechanical testing procedures and the modelling of high strength sheet metal manufacturing, as several sheet manufacturing processes are defined by material fracture.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • laser emission spectroscopy
  • crack
  • strength
  • steel
  • forming