People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gumowska, Aneta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Selected Properties of Bio-Based Layered Hybrid Composites with Biopolymer Blends for Structural Applicationscitations
- 2021Evaluation of Functional Features of Lignocellulosic Particle Composites Containing Biopolymer Binderscitations
- 2021Evaluation of Functional Features of Lignocellulosic Particle Composites Containing Biopolymer Binderscitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of Functional Features of Lignocellulosic Particle Composites Containing Biopolymer Binders
Abstract
<jats:p>In this research, the assessment of the impact of natural biopolymer binders on selected mechanical and physical properties of lignocellulosic composites manufactured with different resination (12%, 15%, 20%). Different mechanical and physical properties were determined: modulus of rupture, modulus of elasticity, internal bonding strength, thickness swelling, water absorption, contact angle, and density profile. Moreover, thermal properties such as thermogravimetric analysis and differential scanning calorimetry were studied for the polymers. The results showed significant improvement of characterized features of the composites produced using biopolymers. However, the rise of the properties was visible when the binder content raised from 12% to 15%. Further increase of biopolymer binder did not imply a considerable change. The most promising biopolymer within the tested ones seems to be polycaprolactone (PCL).</jats:p>