Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hu, Chunfeng

  • Google
  • 2
  • 12
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Ultrahigh Temperature Flash Sintering of Binder-Less Tungsten Carbide within 6 s6citations
  • 2016Joining of CVD-SiC coated and uncoated fibre reinforced ceramic matrix composites with pre-sintered Ti3SiC2 MAX phase using Spark Plasma Sintering80citations

Places of action

Chart of shared publication
Vilémová, Monika
1 / 3 shared
Veverka, Jakub
1 / 2 shared
Deng, Huaijiu
1 / 1 shared
Biesuz, Mattia
1 / 38 shared
Tyrpekl, Václav
1 / 3 shared
Kermani, Milad
1 / 3 shared
Grasso, Salvatore
1 / 11 shared
Tatarko, Peter
1 / 7 shared
Reece, Michael J.
1 / 18 shared
Casalegno, Valentina
1 / 33 shared
Ferraris, Monica
1 / 76 shared
Salvo, Milena
1 / 58 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Vilémová, Monika
  • Veverka, Jakub
  • Deng, Huaijiu
  • Biesuz, Mattia
  • Tyrpekl, Václav
  • Kermani, Milad
  • Grasso, Salvatore
  • Tatarko, Peter
  • Reece, Michael J.
  • Casalegno, Valentina
  • Ferraris, Monica
  • Salvo, Milena
OrganizationsLocationPeople

article

Ultrahigh Temperature Flash Sintering of Binder-Less Tungsten Carbide within 6 s

  • Vilémová, Monika
  • Veverka, Jakub
  • Hu, Chunfeng
  • Deng, Huaijiu
  • Biesuz, Mattia
  • Tyrpekl, Václav
  • Kermani, Milad
  • Grasso, Salvatore
Abstract

<jats:p>We report on an ultrarapid (6 s) consolidation of binder-less WC using a novel Ultrahigh temperature Flash Sintering (UFS) approach. The UFS technique bridges the gap between electric resistance sintering (≪1 s) and flash spark plasma sintering (20–60 s). Compared to the well-established spark plasma sintering, the proposed approach results in improved energy efficiency with massive energy and time savings while maintaining a comparable relative density (94.6%) and Vickers hardness of 2124 HV. The novelty of this work relies on (i) multiple steps current discharge profile to suit the rapid change of electrical conductivity experienced by the sintering powder, (ii) upgraded low thermal inertia CFC dies and (iii) ultra-high consolidation temperature approaching 2750 °C. Compared to SPS process, the UFS process is highly energy efficient (≈200 times faster and it consumes ≈95% less energy) and it holds the promise of energy efficient and ultrafast consolidation of several conductive refractory compounds.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • laser emission spectroscopy
  • carbide
  • hardness
  • tungsten
  • electrical conductivity
  • sintering