People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brandner, Reinhard
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Block shear model for axially-loaded groups of screws
- 2021A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loadingcitations
- 2020Temperature related properties of solid birch wood under quasi-static and dynamic bendingcitations
- 2018Rolling shearcitations
- 2008Determination of Shear Modulus by means of standardized four-point Bending Tests
Places of action
Organizations | Location | People |
---|
article
A Comparative Study on the Temperature Effect of Solid Birch Wood and Solid Beech Wood under Impact Loading
Abstract
In order to use wood for structural and load-bearing purposes in mechanical engineer-ing, basic information on the impact behaviour of the material over a wide temperature range is<br/>needed. Diffuse porous hardwoods such as solid birch wood (Betula pendula) and solid beech wood (Fagus sylvatica) are particularly suited for the production of engineered wood products (EWPs) such<br/>as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process.<br/>In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm3) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five<br/>temperature levels, ranging from −30 ◦C to +90 ◦C. The pendulum hammer (mass = 15 kg) was equipped with an acceleration sensor in order to obtain the acceleration pulse and deceleration force<br/>besides the impact bending energy. In both solid birch wood and solid beech wood, the deceleration forces were highest at temperatures at and below zero. While the average impact bending energy for solid birch wood remained almost constant over the whole considered temperature range, it was far less stable and prone to higher scattering for solid beech wood.