People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peral, Luis Borja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Mechanical and Fatigue Properties of Ti-6Al-4V Alloy Fabricated Using Binder Jetting Process and Subjected to Hot Isostatic Pressingcitations
- 2022Parameter Optimisation in Selective Laser Melting on C300 Steelcitations
- 2021The Positive Role of Nanometric Molybdenum–Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steelscitations
- 2020The Effects of Shot Peening on the Surface Characteristics of 35NCD16 Alloy Steelcitations
Places of action
Organizations | Location | People |
---|
article
The Positive Role of Nanometric Molybdenum–Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels
Abstract
<jats:p>The influence of hydrogen on the fracture toughness and fatigue crack propagation rate of two structural steel grades, with and without vanadium, was evaluated by means of tests performed on thermally precharged samples in a hydrogen reactor at 195 bar and 450 °C for 21 h. The degradation of the mechanical properties was directly correlated with the interaction between hydrogen atoms and the steel microstructure. A LECO DH603 hydrogen analyzer was used to study the activation energies of the different microstructural trapping sites, and also to study the hydrogen eggresion kinetics at room temperature. The electrochemical hydrogen permeation technique was employed to estimate the apparent hydrogen diffusion coefficient. Under the mentioned hydrogen precharging conditions, a very high hydrogen concentration was introduced within the V-added steel (4.3 ppm). The V-added grade had stronger trapping sites and much lower apparent diffusion coefficient. Hydrogen embrittlement susceptibility increased significantly due to the presence of internal hydrogen in the V-free steel in comparison with tests carried out in the uncharged condition. However, the V-added steel grade (+0.31%V) was less sensitive to hydrogen embrittlement. This fact was ascribed to the positive effect of the precipitated nanometric (Mo,V)C to alleviate hydrogen embrittlement. Mixed nanometric (Mo,V)C might be considered to be nondiffusible hydrogen-trapping sites, in view of their strong hydrogen-trapping capability (~35 kJ/mol). Hence, mechanical behavior of the V-added grade in the presence of internal hydrogen was notably improved.</jats:p>