People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cojocaru, Anca
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys
- 2022Influence of Deacetylation Degree of Chitosan on the Anticorrosive Properties of Carbon Steel Coatingscitations
- 2021Experimental Study on the Corrosion of Carbon Steel and Aluminum Alloy in Firefighting Protein Foam Concentratescitations
- 2020Electrodeposition of NiSn-rGO composite coatings from deep eutectic solvents and their physicochemical characterizationcitations
- 2019Comparative Study of Ni-Sn Alloys Electrodeposited from Choline Chloride-Based Ionic Liquids in Direct and Pulsed Currentcitations
Places of action
Organizations | Location | People |
---|
article
Experimental Study on the Corrosion of Carbon Steel and Aluminum Alloy in Firefighting Protein Foam Concentrates
Abstract
<jats:p>The corrosion of mild steel and Al alloy in Fomtec P 6% and 6% P Profoam 806 protein-based foam concentrates was investigated. Weight-loss data for steel showed corrosion penetration of 0.745 mipy in Fomtec and 2.269 mipy in Profoam, whereas for Al alloy the penetration levels were 0.474 and 1.093 mipy, respectively. Scanning electron microscopy and energy dispersive X-ray spectroscopy allowed characterization of the metallic surface covered or free from corrosion products. Values of corrosion potential, corrosion current density and corrosion penetration were calculated by using potentiodynamic polarization curves. Electrochemical impedance spectra illustrated the change in polarization resistance during anodic polarization. Data obtained by accelerated electrochemical methods confirm the greater aggressiveness of the Profoam concentrate compared to Fomtec concentrate.</jats:p>