People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pakieła, Wojciech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Copper Beam Electron Alloying with Ti Powder
- 2023Zinc Oxide Films Fabricated via Sol-Gel Method and Dip-Coating Technique–Effect of Sol Aging on Optical Properties, Morphology and Photocatalytic Activitycitations
- 2023Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loadingcitations
- 2022Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopantscitations
- 2021Mechanical alloying of Mg-Zn-Ca-Er alloy
- 2021High Refractive Index Silica-Titania Films Fabricated via the Sol–Gel Method and Dip-Coating Technique Physical and Chemical Characterizationcitations
Places of action
Organizations | Location | People |
---|
article
High Refractive Index Silica-Titania Films Fabricated via the Sol–Gel Method and Dip-Coating Technique Physical and Chemical Characterization
Abstract
<jats:p>Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol–gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOx:TiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOx:TiOy films in the Vis-NIR spectral range. The surface morphology of the SiOx:TiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOx:TiOy material. The developed binary composite films SiOx:TiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.</jats:p>