Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lazaro, Roberto C. Ambrosio

  • Google
  • 4
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Discretization Approach for the Homogenization of Three-Dimensional Solid-Solid Phononic Crystals in the Quasi-Static Limit: Density and Elastic Moduli3citations
  • 2021Comparative Study on the Quality of Microcrystalline and Epitaxial Silicon Films Produced by PECVD Using Identical SiF4 Based Process Conditions3citations
  • 2020Reduction of residual stress in polymorphous silicon germanium films and their evaluation in microbolometers3citations
  • 2019Study of the effect of the deposition RF power on the characteristics of microcrystalline Silicon-Germanium thin films produced by PECVDcitations

Places of action

Chart of shared publication
Luna López, José Alberto
1 / 1 shared
Morales-Sánchez, Alfredo
1 / 6 shared
Moreno, Mario
1 / 3 shared
Jiménez, Aurelio H. Heredia
1 / 1 shared
Reyes, A. C. Pinón
1 / 1 shared
Carrillo, F. Severiano
1 / 2 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Luna López, José Alberto
  • Morales-Sánchez, Alfredo
  • Moreno, Mario
  • Jiménez, Aurelio H. Heredia
  • Reyes, A. C. Pinón
  • Carrillo, F. Severiano
OrganizationsLocationPeople

article

Comparative Study on the Quality of Microcrystalline and Epitaxial Silicon Films Produced by PECVD Using Identical SiF4 Based Process Conditions

  • Lazaro, Roberto C. Ambrosio
Abstract

<jats:p>Hydrogenated microcrystalline silicon (µc-Si:H) and epitaxial silicon (epi-Si) films have been produced from SiF4, H2 and Ar mixtures by plasma enhanced chemical vapor deposition (PECVD) at 200 °C. Here, both films were produced using identical deposition conditions, to determine if the conditions for producing µc-Si with the largest crystalline fraction (XC), will also result in epi-Si films that encompass the best quality and largest crystalline silicon (c-Si) fraction. Both characteristics are of importance for the development of thin film transistors (TFTs), thin film solar cells and novel 3D devices since epi-Si films can be grown or etched in a selective manner. Therefore, we have distinguished that the H2/SiF4 ratio affects the XC of µc-Si, the c-Si fraction in epi-Si films, and the structure of the epi-Si/c-Si interface. Raman and UV-Vis ellipsometry were used to evaluate the crystalline volume fraction (Xc) and composition of the deposited layers, while the structure of the films were inspected by high resolution transmission electron microscopy (HRTEM). Notably, the conditions for producing µc-Si with the largest XC are different in comparison to the fabrication conditions of epi-Si films with the best quality and largest c-Si fraction.</jats:p>

Topics
  • thin film
  • transmission electron microscopy
  • Silicon
  • ellipsometry
  • chemical vapor deposition