Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kropidłowska, Paulina

  • Google
  • 1
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Effects of Composite Coatings Functionalized with Material Additives Applied on Textile Materials for Cut Resistant Protective Gloves7citations

Places of action

Chart of shared publication
Jurczyk-Kowalska, Magdalena
1 / 2 shared
Laskowski, Radosław
1 / 1 shared
Irzmańska, Emilia
1 / 3 shared
Plocinski, Tomasz
1 / 15 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Jurczyk-Kowalska, Magdalena
  • Laskowski, Radosław
  • Irzmańska, Emilia
  • Plocinski, Tomasz
OrganizationsLocationPeople

article

Effects of Composite Coatings Functionalized with Material Additives Applied on Textile Materials for Cut Resistant Protective Gloves

  • Jurczyk-Kowalska, Magdalena
  • Laskowski, Radosław
  • Irzmańska, Emilia
  • Kropidłowska, Paulina
  • Plocinski, Tomasz
Abstract

<jats:p>The objective of the present work was to evaluate the effects of different types of particles added to a polymer paste applied onto a textile carrier on the cut resistance of the resulting material. Knitted aramid textile samples were coated in laboratory conditions using a polymer paste that was functionalized with 12 types of reinforcing particles of different chemical compositions and size fractions. Cut resistance was tested in accordance with the standard EN ISO 13997:1999 and the results were subjected to statistical analysis. The effects of additive particles on the microstructure of the polymeric layer were assessed by means of scanning electron microscopy. The type and size of the particles affected the cut resistance of the functionalized knitted fabric. They were also found to change the morphology of the porous structure. Composite coatings containing the smallest additive particles exhibited the best cut resistance properties.</jats:p>

Topics
  • porous
  • microstructure
  • polymer
  • scanning electron microscopy
  • composite
  • chemical composition