Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krucaite, Gintare

  • Google
  • 2
  • 11
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Synthesis and Thermal, Photophysical, Electrochemical Properties of 3,3-di[3-Arylcarbazol-9-ylmethyl]oxetane Derivatives5citations
  • 20212,7(3,6)-Diaryl(arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade17citations

Places of action

Chart of shared publication
Schab-Balcerzak, Ewa
1 / 8 shared
Małecki, Jan Grzegorz
1 / 2 shared
Gnida, Paweł
1 / 6 shared
Tavgeniene, Daiva
1 / 2 shared
Beresneviciute, Raminta
1 / 2 shared
Vasylieva, Marharyta
1 / 1 shared
Kotowicz, Sonia
1 / 6 shared
Grigalevicius, Saulius
1 / 1 shared
Korzec, Mateusz
1 / 3 shared
Samuel, Nizy Sara
1 / 2 shared
Pająk, Agnieszka Katarzyna
1 / 7 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Schab-Balcerzak, Ewa
  • Małecki, Jan Grzegorz
  • Gnida, Paweł
  • Tavgeniene, Daiva
  • Beresneviciute, Raminta
  • Vasylieva, Marharyta
  • Kotowicz, Sonia
  • Grigalevicius, Saulius
  • Korzec, Mateusz
  • Samuel, Nizy Sara
  • Pająk, Agnieszka Katarzyna
OrganizationsLocationPeople

article

2,7(3,6)-Diaryl(arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade

  • Krucaite, Gintare
Abstract

<jats:p>Organic light emitting diode (OLED) is a new, promising technology in the field of lighting and display applications due to the advantages offered by its organic electroactive derivatives over inorganic materials. OLEDs have prompted a great deal of investigations within academia as well as in industry because of their potential applications. The electroactive layers of OLEDs can be fabricated from low molecular weight derivatives by vapor deposition or from polymers by spin coating from their solution. Among the low-molar-mass compounds under investigation in this field, carbazole-based materials have been studied at length for their useful chemical and electronic characteristics. The carbazole is an electron-rich heterocyclic compound, whose structure can be easily modified by rather simple reactions in order to obtain 2,7(3,6)-diaryl(arylamino)-substituted carbazoles. The substituted derivatives are widely used for the formation of OLEDs due to their good charge carrier injection and transfer characteristics, electroluminescence, thermally activated delayed fluorescence, improved thermal and morphological stability as well as their thin film forming characteristics. On the other hand, relatively high triplet energies of some substituted carbazole-based compounds make them useful components as host materials even for wide bandgap triplet emitters. The present review focuses on 2,7(3,6)-diaryl(arylamino)-substituted carbazoles, which were described in the last decade and were applied as charge-transporting layers, fluorescent and phosphorescent emitters as well as host materials for OLED devices.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • compound
  • polymer
  • thin film
  • forming
  • molecular weight
  • spin coating