People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schafler, Erhard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Verifying the cytotoxicity of a biodegradable zinc alloy with nanodiamond sensorscitations
- 2024Radial dependence of thermal, structural and micro deformation characteristics in Cu-Zr-Al bulk metallic glass subjected to high pressure torsioncitations
- 2024Effect of V content on the microstructure and mechanical properties of HPT nanostructured CoCrFeMnNiV x high entropy alloys
- 2023Comprehensive thermal analysis of a high stability Cu–Zr–Al bulk metallic glass subjected to high-pressure torsioncitations
- 2023From unlikely pairings to functional nanocomposites: FeTi–Cu as a model systemcitations
- 2022Structure-dynamics relationships in cryogenically deformed bulk metallic glasscitations
- 2022Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg65Ni20Cu5Y10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsioncitations
- 2021In Situ Synchrotron X‐Ray Diffraction during High‐Pressure Torsion Deformation of Ni and NiTicitations
- 2021Properties of HPT-Processed Large Bulks of p-Type Skutterudite DD0.7Fe3CoSb12 with ZT > 1.3citations
- 2021Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatmentscitations
- 2021High-Velocity Stretching of Renewable Polymer Blendscitations
- 2020The effects of severe plastic deformation and/or thermal treatment on the mechanical properties of biodegradable mg-alloyscitations
- 2020Advanced Immersion Testing of Model Mg-Alloys for Biomedical Applicationscitations
- 2020Anomalous Evolution of Strength and Microstructure of High-Entropy Alloy CoCrFeNiMn after High-Pressure Torsion at 300 and 77 Kcitations
- 2017Dislocation Movement Induced by Molecular Relaxations in Isotactic Polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatments
Abstract
In this study, several biodegradable Mg alloys (Mg5Zn, Mg5Zn0.3Ca, Mg5Zn0.15Ca, and Mg5Zn0.15Ca0.15Zr, numbers in wt%) were investigated after thermomechanical processing via high-pressure torsion (HPT) at elevated temperature as well as after additional heat treatments. Indirect and direct analyses of microstructure revealed that the significant strength increases arise not only from dislocations and precipitates but also from vacancy agglomerates. By contrast with former low-temperature processing routes applied by the authors, a significant ductility was obtained because of temperature-induced dynamic recovery. The low initial values of Young's modulus were not significantly affected by warm HPT-processing. nor by heat treatments afterwards. Also, corrosion resistance did not change or even increase during those treatments. Altogether, the study reveals a viable processing route for the optimization of Mg alloys to provide enhanced mechanical properties while leaving the corrosion properties unaffected, suggesting it for the use as biodegradable implant material.