Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grigat, Niels

  • Google
  • 7
  • 30
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Towpreg manufacturing and characterization for filament winding application5citations
  • 2023Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textilescitations
  • 2022Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applications2citations
  • 2022Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applications24citations
  • 2021Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Composites7citations
  • 2018Fabrication of Fiber Reinforced Plastics by Ultrasonic Weldingcitations
  • 2018Low-Cost Fabrication of Fiber Reinforced Plastics by Ultrasonic Processingcitations

Places of action

Chart of shared publication
Gries, Thomas
5 / 27 shared
Jois, Kumar C.
1 / 1 shared
Mölling, Tim
2 / 2 shared
Schuster, Jakob
1 / 1 shared
Vollbrecht, Ben
3 / 3 shared
Jung, Fabian
1 / 2 shared
Sackmann, Johannes
4 / 4 shared
Crooks, Suyin Jireh Torres
1 / 1 shared
Jacobsen, Jens-Lennart
1 / 1 shared
Glimpel, Nikola
1 / 1 shared
Löwen, Alexander
1 / 1 shared
Kelbel, Hannah
1 / 1 shared
Kimm, Magdalena
1 / 1 shared
Kolloch, Martin
2 / 2 shared
Bündgens, Andreas
1 / 1 shared
Kuo, Kai-Chieh
1 / 1 shared
Blaurock, Carolin
1 / 1 shared
Kröger, Hauke
1 / 3 shared
Emonts, Caroline
1 / 1 shared
Peiner, Christoph
1 / 1 shared
Gesché, Valentine
1 / 2 shared
Dittel, Gözdem
1 / 3 shared
Schwab, Max
1 / 1 shared
Bettermann, Isa
1 / 1 shared
Löcken, Henning
1 / 1 shared
Puchas, Georg
1 / 14 shared
Krenkel, Walter
1 / 26 shared
Zou, Wei
2 / 2 shared
Gomer, Andreas
2 / 2 shared
Schomburg, Werner Karl
2 / 5 shared
Chart of publication period
2024
2023
2022
2021
2018

Co-Authors (by relevance)

  • Gries, Thomas
  • Jois, Kumar C.
  • Mölling, Tim
  • Schuster, Jakob
  • Vollbrecht, Ben
  • Jung, Fabian
  • Sackmann, Johannes
  • Crooks, Suyin Jireh Torres
  • Jacobsen, Jens-Lennart
  • Glimpel, Nikola
  • Löwen, Alexander
  • Kelbel, Hannah
  • Kimm, Magdalena
  • Kolloch, Martin
  • Bündgens, Andreas
  • Kuo, Kai-Chieh
  • Blaurock, Carolin
  • Kröger, Hauke
  • Emonts, Caroline
  • Peiner, Christoph
  • Gesché, Valentine
  • Dittel, Gözdem
  • Schwab, Max
  • Bettermann, Isa
  • Löcken, Henning
  • Puchas, Georg
  • Krenkel, Walter
  • Zou, Wei
  • Gomer, Andreas
  • Schomburg, Werner Karl
OrganizationsLocationPeople

article

Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Composites

  • Puchas, Georg
  • Gries, Thomas
  • Vollbrecht, Ben
  • Grigat, Niels
  • Kolloch, Martin
  • Krenkel, Walter
Abstract

<jats:p>Fiber composites with a three-dimensional braided reinforcement architecture have higher fiber volume content and Z-fiber content compared to a two-dimensional braided reinforcement architecture; as a result, the shear strength increases. Porous oxide fiber composites (OFCs) have the inherent weakness of a low interlaminar shear strength, which can be specifically increased by the use of a three-dimensional fiber reinforcement. In this work, the braiding process chain for processing highly brittle oxide ceramic fibers is modified; as a consequence, a bobbin, which protects the filament, is developed and quantitatively evaluated on a test rig with regard to tension and filament breakage. Subsequently, a braiding process is designed which takes into account fiber-protecting aspects, and a three-dimensional reinforced demonstrator is produced and tested. After impregnation with an Al2O3-ZrO2 slurry, by either a prepreg process or a vacuum-assisted process, as well as subsequent sintering, the three-dimensional braid-reinforced OFC exhibits an interlaminar shear strength (ILSS) which is higher than that of two-dimensional braid- or fabric-reinforced samples by 64–95%. The influence of the manufacturing process on the relative macropore content is investigated and correlated with the mechanical properties.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • strength
  • composite
  • two-dimensional
  • sintering
  • oxide ceramic