Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stetsenko, Nataliya

  • Google
  • 3
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Micromechanical aspects of the effect of temperature and local plastic strain magnitude on the fracture toughness of ferrite steelscitations
  • 2022Incorporation of temperature and plastic strain effects into local approach to fracture5citations
  • 2021Incorporation of Temperature and Plastic Strain Effects into Local Approach to Fracture5citations

Places of action

Chart of shared publication
Kotrechko, Sergiy
2 / 3 shared
Zatsarna, Oleksandra
2 / 3 shared
Zimina, Galina
2 / 2 shared
Dlouhý, Ivo
2 / 19 shared
Kozák, Vladislav
2 / 4 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Kotrechko, Sergiy
  • Zatsarna, Oleksandra
  • Zimina, Galina
  • Dlouhý, Ivo
  • Kozák, Vladislav
OrganizationsLocationPeople

article

Incorporation of Temperature and Plastic Strain Effects into Local Approach to Fracture

  • Stetsenko, Nataliya
Abstract

<jats:p>An unjustified simplification of the local quantitative criterion regarding cleavage nucleation is a key problem in the utilisation of the Local Approach to Fracture (LA), particularly to predict the fracture toughness within the ductile-to-brittle transition (DBT) region. The theoretical concept of the effect of both temperature and the plastic strain value on the crack nuclei (CN) generation rate in iron and ferritic steels is presented. It is shown how the plastic strain and temperature affect CN formation rate and, as a consequence, govern the shape of the temperature dependence of fracture toughness KJc and its scatter limits. Within the framework of the microscopic model proposed, dependences of the CN bulk density on the plastic deformation value and temperature are predicted. Convenient approximation dependences for incorporating this effect into the LA are suggested. The experimental data of reactor pressure vessel steel and cast manganese steel demonstrate that the use of these dependences enables one to predict, with sufficient accuracy, the effect of temperature on the value of fracture toughness and its scatter limits over the DBT region. It is shown that accounting for both the temperature and strain dependence of CN bulk density gives rise to the invariance of parameters of the Weibull distribution to temperature.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • crack
  • steel
  • iron
  • fracture toughness
  • Manganese