People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salami, Babatunde Abiodun
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Evaluating long-term durability of nanosilica-enhanced alkali-activated concrete in sulfate environments towards sustainable concrete developmentcitations
- 2023Graphene-based concretecitations
- 2023Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materialscitations
- 2023Using explainable machine learning to predict compressive strength of blended concretecitations
- 2023Implementation of nonlinear computing models and classical regression for predicting compressive strength of high-performance concretecitations
- 2023An overview of factors influencing the properties of concrete incorporating construction and demolition wastescitations
- 2023High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithmcitations
- 2023Evaluating mechanical, microstructural and durability performance of seawater sea sand concrete modified with silica fumecitations
- 2022Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Modelscitations
- 2022Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Modelcitations
- 2022Predicting Bond Strength between FRP Rebars and Concrete by Deploying Gene Expression Programming Modelcitations
- 2022Acid Resistance of Alkali-Activated Natural Pozzolan and Limestone Powder Mortarcitations
- 2022Engineered and green natural pozzolan-nano silica-based alkali-activated concretecitations
- 2022Prediction Models for Evaluating Resilient Modulus of Stabilized Aggregate Bases in Wet and Dry Alternating Environmentscitations
- 2022Investigating the Bond Strength of FRP Laminates with Concrete Using LIGHT GBM and SHAPASH Analysiscitations
- 2021Predicting the compressive strength of a quaternary blend concrete using Bayesian regularized neural networkcitations
- 2021Strength and acid resistance of ceramic-based self-compacting alkali-activated concretecitations
- 2021Effect of alkaline activator ratio on the compressive strength response of POFA-EACC mortar subjected to elevated temperaturecitations
- 2021Assessment of acid resistance of natural pozzolan-based alkali-activated concretecitations
- 2020Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concretecitations
- 2019Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concretecitations
- 2017POFA-engineered alkali-activated cementitious composite performance in acid environmentcitations
- 2016Impact of added water and superplasticizer on early compressive strength of selected mixtures of palm oil fuel ash-based engineered geopolymer compositescitations
- 2016Durability performance of Palm Oil Fuel Ash-based Engineered Alkaline-activated Cementitious Composite (POFA-EACC) mortar in sulfate environmentcitations
- 2014Mechanical properties and durability characteristics of SCC incorporating crushed limestone powdercitations
Places of action
Organizations | Location | People |
---|
article
Strength and acid resistance of ceramic-based self-compacting alkali-activated concrete
Abstract
<p>The development of self-compacting alkali-activated concrete (SCAAC) has become a hot topic in the scientific community; however, most of the existing literature focuses on the utilization of fly ash (FA), ground blast furnace slag (GBFS), silica fume (SF), and rice husk ash (RHA) as the binder. In this study, both the experimental and theoretical assessments using response surface methodology (RSM) were taken into account to optimize and predict the optimal content of ceramic waste powder (CWP) in GBFS-based self-compacting alkali-activated concrete, thus promoting the utilization of ceramic waste in construction engineering. Based on the suggested design array from the RSM model, experimental tests were first carried out to determine the optimum CWP content to achieve reasonable compressive, tensile, and flexural strengths in the SCAAC when exposed to ambient conditions, as well as to minimize its strength loss, weight loss, and UPVL upon exposure to acid attack. Based on the results, the optimum content of CWP that satisfied both the strength and durability aspects was 31%. In particular, a reasonable reduction in the compressive strength of 16% was recorded compared to that of the control specimen (without ceramic). Meanwhile, the compressive strength loss of SCAAC when exposed to acid attack minimized to 59.17%, which was lower than that of the control specimen (74.2%). Furthermore, the developed RSM models were found to be reliable and accurate, with minimum errors (RMSE < 1.337). In addition, a strong corre-lation (R > 0.99, R<sup>2</sup> < 0.99, adj. R<sup>2</sup> < 0.98) was observed between the predicted and actual data. More-over, the significance of the models was also proven via ANOVA, in which p-values of less than 0.001 and high F-values were recorded for all equations.</p>