Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smolen, Jakub

  • Google
  • 2
  • 7
  • 13

Silesian University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Influence of Graphite Filler on the Self-Lubricating Properties of Epoxy Composites5citations
  • 2021The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins8citations

Places of action

Chart of shared publication
Koziol, Mateusz
1 / 1 shared
Gawron, Anna
1 / 3 shared
Stępień, Krzysztof
1 / 1 shared
Godzierz, Marcin
1 / 11 shared
Myalska-Głowacka, Hanna
1 / 4 shared
Mikuśkiewicz, Marta
1 / 2 shared
Olesik, Piotr
1 / 2 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Koziol, Mateusz
  • Gawron, Anna
  • Stępień, Krzysztof
  • Godzierz, Marcin
  • Myalska-Głowacka, Hanna
  • Mikuśkiewicz, Marta
  • Olesik, Piotr
OrganizationsLocationPeople

article

The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins

  • Smolen, Jakub
Abstract

<jats:p>In this paper, we investigated the thermodynamics of the resin curing process, when it was a part of composition with graphite powder and cut carbon fibers, to precisely determine the time and temperature of gelation. The material for the research is a set of commercial epoxy resins with a gelation time not exceeding 100 min. The curing process was characterized for the neat resins and for resins with 10% by weight of flake graphite and cut carbon fibers. The results recorded in the analysis of temperature derivative (ATD) method unequivocally showed that the largest first derivative registered during the test is the gel point of the resin. The innovative approach to measuring the gelation time of resins facilitates the measurements while ensuring the stability of the curing process compared to the normative tests that introduce mechanical interaction. In addition, it was found during the research that the introduction of 10% by weight of carbon particles in the form of graphite and cut carbon fibers rather shortens the gelation time and lowers the temperature peak due to the effective absorption and storage of heat from the cross-linking system. The inhibiting (or accelerating) action of fillers is probably dependent on chemical activity of the cross-linking system.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • resin
  • curing
  • gelation