People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lachowski, Artur
Institute of High Pressure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phasecitations
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Investigation of MXenes Oxidation Process during SPS Method Annealingcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2020Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramicscitations
- 2019Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering techniquecitations
Places of action
Organizations | Location | People |
---|
article
Investigation of MXenes Oxidation Process during SPS Method Annealing
Abstract
<jats:p>This paper discusses the effects of the environment and temperature of the Ti3C2 (MXene) oxidation process. The MXene powders were annealed at temperatures of 1000, 1200, 1400, 1600, and 1800 °C in argon and vacuum using a Spark Plasma Sintering (SPS) furnace. The purpose of the applied annealing method was to determine the influence of a high heating rate on the MXene degradation scheme. Additionally, to determine the thermal stability of MXene during the sintering of SiC matrix composites, SiC–C–B–Ti3C2 powder mixtures were also annealed. The process parameters were as follows: Temperatures of 1400 and 1600 °C, and pressure of 30 MPa in a vacuum. Observations of the microstructure showed that, due to annealing of the SiC–C–B–Ti3C2 powder mixtures, porous particles are formed consisting of TiC, Ti3C2sym, and amorphous carbon. The formation of porous particles is a transitional stage in the formation of disordered carbon structures.</jats:p>