Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pomian, Karolina

  • Google
  • 1
  • 12
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass3citations

Places of action

Chart of shared publication
Choma, Tomasz
1 / 6 shared
Kasonde, Maweja
1 / 1 shared
Leonowicz, Marcin
1 / 26 shared
Błyskun, Piotr
1 / 11 shared
Wróblewski, Rafał
1 / 11 shared
Ostrysz, Mateusz
1 / 1 shared
Łacisz, Wojciech
1 / 1 shared
Rosiński, Marcin
1 / 11 shared
Rygier, Tomasz
1 / 1 shared
Jaroszewicz, Jakub
1 / 23 shared
Morończyk, Bartosz
1 / 12 shared
Żrodowski, Łukasz
1 / 12 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Choma, Tomasz
  • Kasonde, Maweja
  • Leonowicz, Marcin
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Ostrysz, Mateusz
  • Łacisz, Wojciech
  • Rosiński, Marcin
  • Rygier, Tomasz
  • Jaroszewicz, Jakub
  • Morończyk, Bartosz
  • Żrodowski, Łukasz
OrganizationsLocationPeople

article

Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass

  • Choma, Tomasz
  • Kasonde, Maweja
  • Leonowicz, Marcin
  • Błyskun, Piotr
  • Wróblewski, Rafał
  • Ostrysz, Mateusz
  • Pomian, Karolina
  • Łacisz, Wojciech
  • Rosiński, Marcin
  • Rygier, Tomasz
  • Jaroszewicz, Jakub
  • Morończyk, Bartosz
  • Żrodowski, Łukasz
Abstract

<jats:p>The GeniCore Upgraded Field Assisted Sintering Technology U-FAST was applied to the sintering of a commercial Zr-based bulk metallic glass powder AMZ4. The XRD, SEM and DSC analysis of the sintered compacts showed the benefit of the U-FAST method as an enabler for the production of fully amorphous samples with 100% relative density when sintering at 420 °C/480 s (693 K/480 s) and 440 °C/ 60 s (713 K/480 s). The hardness values for fully amorphous samples, over HV1 519, surpass cast materials and 1625 MPa compressive strengths are comparable to commercial cast products. The advantage of the U-FAST technology in this work is attributed to the high heating and cooling rates inherent to ultra-short pulses, which allow to maintain metastable structures and achieve better temperature control during the process. Increasing sintering temperature and time led to the crystallization of the materials. The geometry and material of the dies and punch determine the thermal inertia and pressure distribution inside the compacts, thus affecting the properties of the near net shape NNS compacts made using the U-FAST device.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • scanning electron microscopy
  • x-ray diffraction
  • glass
  • glass
  • strength
  • hardness
  • differential scanning calorimetry
  • crystallization
  • sintering