People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wróblewski, Rafał
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Polymer‐based filaments with embedded magnetocaloric <scp>Ni‐Mn‐Ga</scp> Heusler alloy particles for additive manufacturingcitations
- 2024Polymer-based filaments with embedded magnetocaloric Ni-Mn-Ga Heusler alloy particles for additive manufacturing
- 2023How to control the crystallization of metallic glasses during laser powder bed fusion? Towards part-specific 3D printing of in situ compositescitations
- 2022How to Control the Crystallization of Metallic Glasses During Laser Powder Bed Fusion? Towards Part-Specific 3d Printing of in Situ Composites
- 2021Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glasscitations
- 2021Microstructure and magnetic properties of selected laser melted Ni-Mn-Ga and Ni-Mn-Ga-Fe powders derived from as melt-spun ribbons precursorscitations
- 2020Impact of the Carbon Nanofillers Addition on Rheology and Absorption Ability of Composite Shear Thickening Fluidscitations
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2016The Novel Scanning Strategy For Fabrication Metallic Glasses By Selective Laser Melting
- 2006Modification of the properties of Ni-Mn-Ga magnetic shape memory alloys by minor addition of terbiumcitations
- 2006Effect of the processing conditions on the microstructure of urethane magnetorheological elastomerscitations
Places of action
Organizations | Location | People |
---|
article
Ultrashort Sintering and Near Net Shaping of Zr-Based AMZ4 Bulk Metallic Glass
Abstract
<jats:p>The GeniCore Upgraded Field Assisted Sintering Technology U-FAST was applied to the sintering of a commercial Zr-based bulk metallic glass powder AMZ4. The XRD, SEM and DSC analysis of the sintered compacts showed the benefit of the U-FAST method as an enabler for the production of fully amorphous samples with 100% relative density when sintering at 420 °C/480 s (693 K/480 s) and 440 °C/ 60 s (713 K/480 s). The hardness values for fully amorphous samples, over HV1 519, surpass cast materials and 1625 MPa compressive strengths are comparable to commercial cast products. The advantage of the U-FAST technology in this work is attributed to the high heating and cooling rates inherent to ultra-short pulses, which allow to maintain metastable structures and achieve better temperature control during the process. Increasing sintering temperature and time led to the crystallization of the materials. The geometry and material of the dies and punch determine the thermal inertia and pressure distribution inside the compacts, thus affecting the properties of the near net shape NNS compacts made using the U-FAST device.</jats:p>