People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Németh, Gergely
Czech Academy of Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Residual Stress Distribution in Dievar Tool Steel Bars Produced by Conventional Additive Manufacturing and Rotary Swaging Processescitations
- 2024Corrosion behavior of selective laser melting-manufactured bio-applicable 316L stainless steel in ionized simulated body fluidcitations
- 2021Microstructural Evolution of a 3003 Based Aluminium Alloy during the CSET Processcitations
- 2020Strain Hardening in an AZ31 Alloy Submitted to Rotary Swagingcitations
- 2020Magnesium Reinforced with Inconel 718 Particles Prepared Ex Situ—Microstructure and Propertiescitations
- 2018Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wirescitations
- 2018Characterization of the Microstructure, Local Macro-Texture and Residual Stress Field of Commercially Pure Titanium Grade 2 Prepared by CONFORM ECAPcitations
Places of action
Organizations | Location | People |
---|
article
Microstructural Evolution of a 3003 Based Aluminium Alloy during the CSET Process
Abstract
<jats:p>A new severe plastic deformation technique, known as the complex shearing of extruded tube (CSET), was applied to a 3003 based model aluminium alloy. This technique, consisting of a combination of extrusion and two consecutive Equal Chanel Angular Pressing (ECAP) passes accompanied with concurrent torsional straining, is capable to produce a fine-grained tubular sample directly from a bulk metallic cylinder in one forming operation. In the present paper, the microstructural development of the alloy during partial processes of CSET was studied in detail using light microscopy, electron backscatter diffraction, and transmission electron microscopy. It was found that CSET technique refines the grain size down to 0.4 µm and, consequently, increases the microhardness from the initial value of 40 HV to the final value of 120 HV. The contributions of partial processes of CSET to the total strain were estimated.</jats:p>