Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Németh, Gergely

  • Google
  • 7
  • 35
  • 57

Czech Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Residual Stress Distribution in Dievar Tool Steel Bars Produced by Conventional Additive Manufacturing and Rotary Swaging Processes2citations
  • 2024Corrosion behavior of selective laser melting-manufactured bio-applicable 316L stainless steel in ionized simulated body fluid8citations
  • 2021Microstructural Evolution of a 3003 Based Aluminium Alloy during the CSET Process4citations
  • 2020Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging12citations
  • 2020Magnesium Reinforced with Inconel 718 Particles Prepared Ex Situ—Microstructure and Properties8citations
  • 2018Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires16citations
  • 2018Characterization of the Microstructure, Local Macro-Texture and Residual Stress Field of Commercially Pure Titanium Grade 2 Prepared by CONFORM ECAP7citations

Places of action

Chart of shared publication
Tuharin, Kostyantyn
1 / 1 shared
Levytska, Olena
1 / 1 shared
Izák, Josef
1 / 2 shared
Kocich, Radim
2 / 13 shared
Šaroun, Jan
1 / 2 shared
Strunz, Pavel
1 / 9 shared
Pagáč, Marek
1 / 1 shared
Benč, Marek
1 / 4 shared
Kunčická, Lenka
1 / 10 shared
Weiser, Adam
1 / 5 shared
Molnárová, Orsolya
1 / 4 shared
Čapek, Jaroslav
1 / 10 shared
Habr, Stanislav
1 / 2 shared
Málek, Přemysl
1 / 1 shared
De Prado, Esther
1 / 1 shared
Ekrt, Ondřej
1 / 2 shared
Halmesova, Kristyna
1 / 3 shared
Minárik, Peter
3 / 9 shared
Škraban, Tomáš
1 / 1 shared
Dzugan, Jan
2 / 7 shared
Trojanova, Zuzanka
2 / 3 shared
Drozd, Zdeněk
2 / 2 shared
Lukáč, Pavel
2 / 2 shared
Seetharaman, Sankaranarayanan
1 / 6 shared
Fekete, Klaudia Horváth
1 / 4 shared
Nacházel, Jan
1 / 1 shared
Máthis, Kristián
1 / 5 shared
Procházka, Radek
1 / 1 shared
Palán, Jan
2 / 2 shared
Duchek, Michal
2 / 8 shared
Džugan, Jan
1 / 4 shared
Hervoches, Charles
1 / 5 shared
Mathis, Kristian
1 / 4 shared
Cejpek, Petr
1 / 2 shared
Horváth, Klaudia
1 / 1 shared
Chart of publication period
2024
2021
2020
2018

Co-Authors (by relevance)

  • Tuharin, Kostyantyn
  • Levytska, Olena
  • Izák, Josef
  • Kocich, Radim
  • Šaroun, Jan
  • Strunz, Pavel
  • Pagáč, Marek
  • Benč, Marek
  • Kunčická, Lenka
  • Weiser, Adam
  • Molnárová, Orsolya
  • Čapek, Jaroslav
  • Habr, Stanislav
  • Málek, Přemysl
  • De Prado, Esther
  • Ekrt, Ondřej
  • Halmesova, Kristyna
  • Minárik, Peter
  • Škraban, Tomáš
  • Dzugan, Jan
  • Trojanova, Zuzanka
  • Drozd, Zdeněk
  • Lukáč, Pavel
  • Seetharaman, Sankaranarayanan
  • Fekete, Klaudia Horváth
  • Nacházel, Jan
  • Máthis, Kristián
  • Procházka, Radek
  • Palán, Jan
  • Duchek, Michal
  • Džugan, Jan
  • Hervoches, Charles
  • Mathis, Kristian
  • Cejpek, Petr
  • Horváth, Klaudia
OrganizationsLocationPeople

article

Microstructural Evolution of a 3003 Based Aluminium Alloy during the CSET Process

  • Molnárová, Orsolya
  • Čapek, Jaroslav
  • Németh, Gergely
  • Habr, Stanislav
  • Málek, Přemysl
  • De Prado, Esther
  • Ekrt, Ondřej
Abstract

<jats:p>A new severe plastic deformation technique, known as the complex shearing of extruded tube (CSET), was applied to a 3003 based model aluminium alloy. This technique, consisting of a combination of extrusion and two consecutive Equal Chanel Angular Pressing (ECAP) passes accompanied with concurrent torsional straining, is capable to produce a fine-grained tubular sample directly from a bulk metallic cylinder in one forming operation. In the present paper, the microstructural development of the alloy during partial processes of CSET was studied in detail using light microscopy, electron backscatter diffraction, and transmission electron microscopy. It was found that CSET technique refines the grain size down to 0.4 µm and, consequently, increases the microhardness from the initial value of 40 HV to the final value of 120 HV. The contributions of partial processes of CSET to the total strain were estimated.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • extrusion
  • aluminium
  • aluminium alloy
  • transmission electron microscopy
  • electron backscatter diffraction