People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salvetr, Pavel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024A review on additive manufacturing methods for NiTi shape memory alloy productioncitations
- 2023Effect of Cu alloying on mechanical properties of medium-c steel after long-time tempering at 500 °Ccitations
- 2023Processing of Niobium-Alloyed High-Carbon Tool Steel via Additive Manufacturing and Modern Powder Metallurgycitations
- 2023Effect of Double-Step and Strain-Assisted Tempering on Properties of Medium-Carbon Steelcitations
- 2023Evolution of microstructure and embrittlement during the tempering process in SiCrCu medium-carbon steels ; Razvoj mikrostrukture in krhkosti srednje ogljičnega jekla vrste SiCrCu med njegovim postopkom popuščanjacitations
- 2023In-situ directed energy deposition of Al based low density steel for automotive applicationscitations
- 2022Enhanced Spring Steel’s Strength Using Strain Assisted Temperingcitations
- 2021Effects of Silicon, Chromium, and Copper on Kinetic Parameters of Precipitation during Tempering of Medium Carbon Steelscitations
- 2021Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steelcitations
- 2020Design and optimization of a closed die forging of nickel-based superalloy turbine blade
- 2019The effect of microstructure on hydrogen permeability of high strength steelscitations
- 2019Mechanism of the Intermediary Phase Formation in Ti-20 wt. % Al Mixture during Pressureless Reactive Sinteringcitations
Places of action
Organizations | Location | People |
---|
article
Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steel
Abstract
<jats:p>Requirements for mechanical properties of steels are constantly increasing, and the combination of quenching and tempering is the method generally chosen for achieving high strength in medium carbon steels. This study examines the influence of various silicon contents from 1.06 to 2.49 wt% and the addition of copper (1.47 wt%) on the behavior of 1.7102 steel starting with the as-quenched state and ending with the tempered condition at the temperature of 500 °C. The microstructure was characterized by SEM and TEM, the phase composition and dislocation density were studied by XRD analysis, and mechanical properties were assessed by tensile and hardness testing, whereas tempered martensite embrittlement was assessed using Charpy impact test and the activation energy of carbide precipitation was determined by dilatometry. The benefit of copper consists in the improvement of reduction of area by tempering between 150 and 300 °C. The increase in strength due to copper precipitation occurs upon tempering at 500 °C, where strength is generally low due to a drop in dislocation density and changes in microstructure. The increasing content of silicon raises strength and dislocation density in steels, but the plastic properties of steel are limited. It was found that the silicon content of 1.5 wt% is optimum for the materials under study.</jats:p>