Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miossec, Pauline

  • Google
  • 1
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules9citations

Places of action

Chart of shared publication
Msallamová, Šárka
1 / 4 shared
Fojt, Jaroslav
1 / 4 shared
Novák, Pavel
1 / 13 shared
Kopecek, Jaromir
1 / 3 shared
Rudomilova, Darya
1 / 3 shared
Tsepeleva, Alisa
1 / 7 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Msallamová, Šárka
  • Fojt, Jaroslav
  • Novák, Pavel
  • Kopecek, Jaromir
  • Rudomilova, Darya
  • Tsepeleva, Alisa
OrganizationsLocationPeople

article

Corrosion Properties of Mn-Based Alloys Obtained by Aluminothermic Reduction of Deep-Sea Nodules

  • Msallamová, Šárka
  • Fojt, Jaroslav
  • Novák, Pavel
  • Kopecek, Jaromir
  • Rudomilova, Darya
  • Tsepeleva, Alisa
  • Miossec, Pauline
Abstract

Deep-sea manganese nodules are polymetallic oxidic ores that can be found on a seabed. Aluminothermic reduction is one of the possibilities of manganese nodules processing. This process obtains the polymetallic alloy with a high content of Mn and a varying content of Al, depending on the ratio between aluminum and nodules. The corrosion behaviors of three experimental Mn-based alloys produced by aluminothermic reduction with a content of Mn > 50 wt % were studied. The electrochemical testing in potable water and model seawater was used to explain the corrosion mechanism of Mn-based alloys. The results showed that the corrosion rate of experimental Mn-based alloy decreases with the increase in aluminum content in both potable water and model seawater. It was observed that the uniform corrosion of experimental Mn-based alloys is changed with an increase in aluminum content in alloy to localized corrosion, which was caused by microcells in an environment of model seawater. In contrast, the formation of a semi-protective layer of corrosion products was observed on the surface of Mn-based alloys with a higher content of aluminum in potable water. Moreover, the pitting corrosion of tested Mn-based alloys was observed neither in potable water nor in model seawater.

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • pitting corrosion
  • uniform corrosion
  • Manganese