Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gurevich, Leonid

  • Google
  • 13
  • 51
  • 91

Aalborg University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels:Durable Conductive Biomaterials for Electroactive Tissues and Interfaces8citations
  • 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces8citations
  • 2022Epoxy Compositions with Reduced Flammability Based on DER-354 Resin and a Curing Agent Containing Aminophosphazenes Synthesized in Bulk Isophoronediamine18citations
  • 2022Resolving the Conflict between Strength and Toughness in Bioactive Silica–Polymer Hybrid Materials18citations
  • 2021Melt Electrospinning of PET and Composite PET-Aerogel Fibers: An Experimental and Modeling Study1citations
  • 2021Melt Electrospinning of PET and Composite PET-Aerogel Fibers: An Experimental and Modeling Study1citations
  • 2021Melt Electrospinning of PET and Composite PET-Aerogel Fiberscitations
  • 2017Formation of conductive DNA-based nanowires via conjugation of dsDNA with cationic peptide6citations
  • 2017Formation of conductive DNA-based nanowires via conjugation of dsDNA with cationic peptide6citations
  • 2017Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR1citations
  • 2015Nonfouling Tunable beta CD Dextran Polymer Films for Protein Applications12citations
  • 2015Nonfouling tunable βCD dextran polymer films for protein applications12citations
  • 2014Influence of Strain-Hardened Zones and Intermetallic Layers of Explosion Welded and Heat Treated Al/Cu Laminated Metal Composites on the Evolution of Thermal Conductivity Coefficientcitations

Places of action

Chart of shared publication
Zandi, Nooshin
2 / 3 shared
Lotfi, Roya
2 / 3 shared
Christiansen, Jesper De C.
1 / 2 shared
Dolatshahi-Pirouz, Alireza
2 / 19 shared
Simchi, Abdolreza
2 / 8 shared
Mehrali, Mehdi
2 / 12 shared
Pennisi, Cristian Pablo
2 / 5 shared
Tamjid, Elnaz
2 / 2 shared
Pourjavadi, Ali
2 / 5 shared
Christiansen, Jesper De Claville
1 / 9 shared
Orlov, Alexey
1 / 2 shared
Korotkov, Roman
1 / 1 shared
Chistyakov, Evgeniy
1 / 2 shared
Yudaev, Pavel
1 / 2 shared
Konstantinova, Anastasia
1 / 1 shared
Terekhov, Ivan
1 / 1 shared
Mezhuev, Yaroslav
1 / 1 shared
Ren, Xiangting
1 / 3 shared
Xing, Bengang
1 / 1 shared
Kristensen, Peter
1 / 2 shared
Du, Tao
1 / 6 shared
Yu, Donghong
1 / 7 shared
Smedskjær, Morten Mattrup
1 / 111 shared
Fan, Wei
1 / 1 shared
Youngman, Randall E.
1 / 28 shared
Droce, Aida
1 / 1 shared
Jensen, Lars Rosgaard
1 / 37 shared
Bauchy, Mathieu
1 / 36 shared
Christiansen, Lasse
3 / 9 shared
Wang, Deyong
3 / 7 shared
Fojan, Peter
3 / 12 shared
Herrero, Julio Gomez
2 / 2 shared
Nazari, Zeniab Esmail
2 / 2 shared
Gerasimov, Maxim
1 / 1 shared
Rodin, V.
1 / 2 shared
Ponomarev, Alexander
1 / 1 shared
Wingren, Christer
2 / 2 shared
Nielsen, Thorbjorn T.
1 / 1 shared
Kristensen, Peter K.
1 / 1 shared
Stade, Lars W.
1 / 1 shared
Larsen, Kim L.
1 / 1 shared
Shimizu, Kyoko
2 / 6 shared
Duroux, Laurent
2 / 2 shared
Hinge, Mogens
2 / 16 shared
Städe, Lars Wagner
1 / 2 shared
Larsen, Kim Lambertsen
1 / 4 shared
Nielsen, Thorbjørn Terndrup
1 / 2 shared
Kristensen, Peter Kjær
1 / 14 shared
Pronichev, Dmitry
1 / 1 shared
Trykov, Yuriy
1 / 1 shared
Trunov, Mikhail
1 / 1 shared
Chart of publication period
2024
2022
2021
2017
2015
2014

Co-Authors (by relevance)

  • Zandi, Nooshin
  • Lotfi, Roya
  • Christiansen, Jesper De C.
  • Dolatshahi-Pirouz, Alireza
  • Simchi, Abdolreza
  • Mehrali, Mehdi
  • Pennisi, Cristian Pablo
  • Tamjid, Elnaz
  • Pourjavadi, Ali
  • Christiansen, Jesper De Claville
  • Orlov, Alexey
  • Korotkov, Roman
  • Chistyakov, Evgeniy
  • Yudaev, Pavel
  • Konstantinova, Anastasia
  • Terekhov, Ivan
  • Mezhuev, Yaroslav
  • Ren, Xiangting
  • Xing, Bengang
  • Kristensen, Peter
  • Du, Tao
  • Yu, Donghong
  • Smedskjær, Morten Mattrup
  • Fan, Wei
  • Youngman, Randall E.
  • Droce, Aida
  • Jensen, Lars Rosgaard
  • Bauchy, Mathieu
  • Christiansen, Lasse
  • Wang, Deyong
  • Fojan, Peter
  • Herrero, Julio Gomez
  • Nazari, Zeniab Esmail
  • Gerasimov, Maxim
  • Rodin, V.
  • Ponomarev, Alexander
  • Wingren, Christer
  • Nielsen, Thorbjorn T.
  • Kristensen, Peter K.
  • Stade, Lars W.
  • Larsen, Kim L.
  • Shimizu, Kyoko
  • Duroux, Laurent
  • Hinge, Mogens
  • Städe, Lars Wagner
  • Larsen, Kim Lambertsen
  • Nielsen, Thorbjørn Terndrup
  • Kristensen, Peter Kjær
  • Pronichev, Dmitry
  • Trykov, Yuriy
  • Trunov, Mikhail
OrganizationsLocationPeople

article

Melt Electrospinning of PET and Composite PET-Aerogel Fibers: An Experimental and Modeling Study

  • Christiansen, Lasse
  • Wang, Deyong
  • Gurevich, Leonid
Abstract

Increasingly advanced applications of polymer fibers are driving the demand for new, high-performance fiber types. One way to produce polymer fibers is by electrospinning from polymer solutions and melts. Polymer melt electrospinning produces fibers with small diameters through solvent-free processing and has applications within different fields, ranging from textile and construction, to the biotech and pharmaceutical industries. Modeling of the electrospinning process has been mainly limited to simulations of geometry-dependent electric field distributions. The associated large change in viscosity upon fiber formation and elongation is a key issue governing the electrospinning process, apart from other environmental factors. This paper investigates the melt electrospinning of aerogel-containing fibers and proposes a logistic viscosity model approach with parametric ramping in a finite element method (FEM) simulation. The formation of melt electrospun fibers is studied with regard to the spinning temperature and the distance to the collector. The formation of PET-Aerogel composite fibers by pneumatic transport is demonstrated, and the critical parameter is found to be the temperature of the gas phase. The experimental results form the basis for the electrospinning model, which is shown to reproduce the trend for the fiber diameter, both for polymer as well as polymer-aerogel composites.

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • melt
  • composite
  • viscosity
  • gas phase
  • electrospinning