People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Omastova, Maria
Slovak Academy of Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Composite materials for supercapacitor electrodes utilizing polypyrrole nanotubes, reduced graphene oxides and metal-organic framework
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutmentcitations
- 2024Anticorrosion and Antimicrobial Tannic Acid-Functionalized Ti-Metallic Glass Ribbons for Dental Abutment
- 2023Iron oxide – poly(m-anthranilic acid)–poly(ε-caprolactone) electrospun composite nanofibers: fabrication and propertiescitations
- 2023Styrene–butadiene–styrene-based stretchable electrospun nanofibers by carbon nanotube inclusioncitations
- 2022Magnetron Sputtered Non‐Toxic and Precious Element‐Free TiZrGe Metallic Glass Nanofilms with Enhanced Biocorrosion Resistancecitations
- 2022Investigation of the thermal conductivity enhancement mechanism of polymer composites with carbon-based fillers by scanning thermal microscopycitations
- 2021Electrical Conductivity of Glass Fiber-Reinforced Plastic with Nanomodified Matrix for Damage Diagnosticcitations
- 2021Enhancement of interfacial hydrogen interactions with nanoporous gold-containing metallic glasscitations
- 2020Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterizationcitations
- 2018The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites
- 2011A versatile route for surface modification of carbon, metals and semi-conductors by diazonium salt-initiated photopolymerizationcitations
- 2011Electromagnetic absorption efficiency of polypropylene/montmorillonite/polypyrrole nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Electrical Conductivity of Glass Fiber-Reinforced Plastic with Nanomodified Matrix for Damage Diagnostic
Abstract
<jats:p>The electrical conductivity of glass fiber-reinforced plastic (GFRP) with epoxy matrix modified by multiwall carbon nanotubes (MWCNT) was studied. The electrical conductivity of nanomodified lamina and multi-layered GFRP was investigated on several levels using a structural approach. Components of the electrical conductivity tensor for unidirectional-reinforced monolayer were calculated similarly as in micromechanics using the conductivity of the nanomodified matrix. The electrical conductivity of multilayer composite was calculated using laminate theory and compared with values measured experimentally for various fiber orientation angles. Calculated and experimental data were in good agreement. The voltage distribution measured throughout the laminate allowed detecting the damage in its volume. The electrode network located on the laminate surface could determine the location, quantification, and geometry of the damage in the GFRP lamina modified with MWCNT. Experimental and calculated electrical resistance data for GFRP double-cantilever beam specimens were investigated in Mode I interlaminar fracture toughness test. Results demonstrate that electrical resistance could be successfully used for the diagnostic of the crack propagation during interlaminar fracture of the MWCNT-modified GFRP.</jats:p>