People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skołek, Emilia
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Electron beam hardening of nanobainitic steelcitations
- 2023Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinerycitations
- 2023Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrixcitations
- 2022The Microstructure of Cast Steel Subjected to Austempering and B-Q&P Heat Treatmentcitations
- 2021Influence of Intermediate Annealing Treatment on the Kinetics of Bainitic Transformation in X37CrMoV5-1 Steelcitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Tribocorrosion of nanocrystalline 42NiSiMo8-3-7-F steel
- 2020CORROSION RESISTANCE OF THE NANOSTRUCTURED X37CrMoV5-1 STEELcitations
- 2018High Strain Rate Dynamic Deformation of ADI
- 2018High Strain Rate Dynamic Deformation of ADIcitations
- 2017The comparative study of the microstructure and phase composition of nanoausferritic ductile iron alloy using SEM, TEM, magnetometer and X-ray diffraction methodscitations
- 2016The microstructure and phase composition of 35CrSiMn5-5-4 steel after quenching and partitioning heat treatmentcitations
- 2013The comparative study of phase composition of steels using X-ray diffraction and mössbauer spectroscopy methods
Places of action
Organizations | Location | People |
---|
article
Influence of Intermediate Annealing Treatment on the Kinetics of Bainitic Transformation in X37CrMoV5-1 Steel
Abstract
<jats:p>Intermediate annealing treatment (IAT) is a new process that accelerates the bainitic transformation in steels. This stimulation is crucial, especially in the prolonged production of nanobainitic steels. Among other recognised methods, it seems to be an effective and economical process. However, there are very few research works in this area. The objective of this study was to collate microstructural changes caused by IAT with differences in the kinetics of the subsequent bainitic transformation in the X37CrMoV5-1 tool steel. Differential dilatometry, LM and SEM microscopic observations, EDS and XRD analysis, and computer simulations were used to investigate the effect of IAT on the kinetics of bainitic transformation. The study has revealed that introducing an additional isothermal heating stage immediately after austenitising significantly affects the kinetics of bainitic transformation—it can accelerate or suppress it. The type and strength of the effect depends on the concentration, distribution, and morphology of the precipitations that occurred during IAT.</jats:p>