People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calvo-Dahlborg, Monique
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Effect of Y2O3 addition on the microstructure and mechanical properties of an Al1.8CoCrCu0.5FeNi BCC HEAcitations
- 2021Investigation into the magnetic properties of CoFeNiCryCux alloyscitations
- 2021Design and production of a new feconicralcu high-entropy alloy: influence of powder production method on sinteringcitations
- 2021Design and Production of a New FeCoNiCrAlCu High-Entropy Alloy: Influence of Powder Production Method on Sinteringcitations
- 2016Structural and Microstructural Characterization of CoCrFeNiPd High Entropy Alloyscitations
- 2011Gas atomization of Al-Ni powders: Solidification modeling and neutron diffraction analysiscitations
- 2009Identification of phases in gas-atomised droplets by combination of neutron and X-ray diffraction techniques with atom probe tomographycitations
- 2003Amorphous alloy composition with high glass-formation ability in the pseudoternary Zr-[IQC-Al62Cu25.5Fe12.5]-[DQC-Al70Co15Ni15] alloy systemcitations
- 2002Synthesis of Cu47Ti34Zr11Ni8Bulk Metallic Glass by Warm Extrusion of Gas Atomized Powderscitations
Places of action
Organizations | Location | People |
---|
article
Design and Production of a New FeCoNiCrAlCu High-Entropy Alloy: Influence of Powder Production Method on Sintering
Abstract
<jats:p>The structure of FeCoNiCrAl1.8Cu0.5 high-entropy alloys (HEA) obtained by two different routes has been studied. The selection of the composition has followed the Hume–Rothery approach in terms of number of itinerant electrons (e/a) and average atomic radius to control the formation of specific phases. The alloys were obtained either from a mixture of elemental powders or from gas-atomised powders, being consolidated in both cases by uniaxial pressing and vacuum sintering at temperatures of 1200 °C and 1300 °C. The characterization performed in the sintered samples from both types of powder includes scanning electron microscopy, X-ray diffraction, differential thermal analysis, and density measurements. It was found that the powder production techniques give similar phases content. However, the sintering at 1300 °C destroys the achieved phase stability of the samples. The phases identified by all techniques and confirmed by Thermo-Calc calculations are the following: a major Co-Ni-Al-rich (P1) BCC phase, which stays stable after 1300 °C sintering and homogenising TT treatments; a complex Cr-Fe-rich (P2) B2 type phase, which transforms into a sigma phase after the 1300 °C sintering and homogenising TT treatments; and a very minor Al-Cu-rich (P3) FCC phase, which also transforms into Domain II and Domain III phases during the heating at 1300 °C and homogenising TT treatments.</jats:p>