Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pavlyuk, Volodymyr

  • Google
  • 10
  • 26
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Intermetallic Materials for High-Capacity Hydrogen Storage Systemscitations
  • 2023MAl4Ir2 (M = Ca, Sr, Eu): superstructures of the KAu4In2 type1citations
  • 2022MAl4Ir2 (M = Ca, Sr, Eu) : superstructures of the KAu4In2 typecitations
  • 2021Electrochemical hydrogenation, lithiation and sodiation of the GdFe2–xMx and GdMn2–xMx intermetallicscitations
  • 2021Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives1citations
  • 2019Li20Mg6Cu13Al42: a new ordered quaternary superstructure to the icosahedral T-Mg32(Zn,Al)49 phase with fullerene-like Al60 cluster5citations
  • 2019La3Ni4Al2: a new layered aluminide3citations
  • 2017LiBC<sub>3</sub>: a new borocarbide based on graphene and heterographene networks5citations
  • 2014High hydrogen content super-lightweight intermetallics from the Li–Mg–Si system21citations
  • 2012Terbium (lithium zinc) distannide, TbLi1–xZnxSn2 (x = 0.2)9citations

Places of action

Chart of shared publication
Pavlyuk, Nazar
3 / 3 shared
Yarema, Maksym
1 / 26 shared
Kordan, Vasyl
1 / 2 shared
Dmytriv, Grygoriy
4 / 4 shared
Hlukhyy, Viktor
3 / 8 shared
Janka, Oliver
2 / 20 shared
Zaremba, Nazar
3 / 4 shared
Pöttgen, Rainer
2 / 78 shared
Stegemann, Frank
2 / 2 shared
Klenner, Steffen
2 / 5 shared
Engel, Stefan
2 / 10 shared
Ciesielski, Wojciech
1 / 2 shared
Kluziak, Karolina
2 / 2 shared
Balińska, Agnieszka
1 / 1 shared
Kulawik, Damian
1 / 2 shared
Ehrenberg, Helmut
3 / 51 shared
Nychyporuk, Galyna
1 / 1 shared
Schepilov, Yurij
1 / 1 shared
Milashius, Viktoria
1 / 1 shared
Gutfleisch, Oliver
1 / 54 shared
Lindemann, Inge
1 / 3 shared
Chumak, Ihor
1 / 2 shared
Tarasiuk, Ivan
1 / 1 shared
Rozdzynska-Kielbik, Beata
1 / 1 shared
Oshchapovsky, Igor
1 / 1 shared
Stetskiv, Andrij
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2019
2017
2014
2012

Co-Authors (by relevance)

  • Pavlyuk, Nazar
  • Yarema, Maksym
  • Kordan, Vasyl
  • Dmytriv, Grygoriy
  • Hlukhyy, Viktor
  • Janka, Oliver
  • Zaremba, Nazar
  • Pöttgen, Rainer
  • Stegemann, Frank
  • Klenner, Steffen
  • Engel, Stefan
  • Ciesielski, Wojciech
  • Kluziak, Karolina
  • Balińska, Agnieszka
  • Kulawik, Damian
  • Ehrenberg, Helmut
  • Nychyporuk, Galyna
  • Schepilov, Yurij
  • Milashius, Viktoria
  • Gutfleisch, Oliver
  • Lindemann, Inge
  • Chumak, Ihor
  • Tarasiuk, Ivan
  • Rozdzynska-Kielbik, Beata
  • Oshchapovsky, Igor
  • Stetskiv, Andrij
OrganizationsLocationPeople

article

Enhancement of Y5−xPrxSb3−yMy (M = Sn, Pb) Electrodes for Lithium- and Sodium-Ion Batteries by Structure Disordering and CNTs Additives

  • Ciesielski, Wojciech
  • Kluziak, Karolina
  • Balińska, Agnieszka
  • Pavlyuk, Nazar
  • Pavlyuk, Volodymyr
  • Kulawik, Damian
Abstract

<jats:p>The maximally disordered (MD) phases with the general formula Y5−xPrxSb3−yMy (M = Sn, Pb) are formed with partial substitution of Y by Pr and Sb by Sn or Pb in the binary Y5Sb3 compound. During the electrochemical lithiation and sodiation, the formation of Y5-xPrxSb3-yMyLiz and Y5−xPrxSb3−yMyNaz maximally disordered–high entropy intermetallic phases (MD-HEIP), as the result of insertion of Li/Na into octahedral voids, were observed. Carbon nanotubes (CNT) are an effective additive to improve the cycle stability of the Y5−xPrxSb3−yMy (M = Sn, Pb) anodes for lithium-ion (LIBs) and sodium-ion batteries (SIBs). Modification of Y5−xPrxSb3−ySny alloys by carbon nanotubes allowed us to significantly increase the discharge capacity of both types of batteries, which reaches 280 mAh · g−1 (for LIBs) and 160 mAh · g−1 (for SIBs), respectively. For Y5−xPrxSb3−yPby alloys in which antimony is replaced by lead, these capacities are slightly smaller and are 270 mAh · g−1 (for LIBs) and 155 mAh · g−1 (for SIBs), respectively. Results show that structure disordering and CNT additives could increase the electrode capacities up to 30% for LIBs and up to 25% for SIBs.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • Carbon
  • phase
  • nanotube
  • molecular dynamics
  • Sodium
  • Lithium
  • void
  • intermetallic
  • Antimony