People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guillon, Olivier
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes
- 2024Blacklight sintering of garnet-based composite cathodes
- 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.citations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnetscitations
- 2024Correlative characterization of plasma etching resistance of various aluminum garnets
- 2024Delithiation-induced secondary phase formation in Li-rich cathode materials
- 2024Space charge governs the kinetics of metal exsolutioncitations
- 2024Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid‐State Batteries
- 2024Tooling in Spark Plasma Sintering Technology: Design, Optimization, and Applicationcitations
- 2023Role of Fe/Co Ratio in Dual Phase Ce0.8Gd0.2O2−δ–Fe3−xCoxO4 Composites for Oxygen Separationcitations
- 2023Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteries
- 2023Enhanced metal exsolution at the non-polar (001) surfaces of multi-faceted epitaxial thin filmscitations
- 2023Creep and Superplasticity of Gadolinium-Doped Ceria Ceramics under AC Electric Current
- 2023Enabling metal substrates for garnet-based composite cathodes by laser sintering
- 2023Optimizing the Composite Cathode Microstructure in All‐Solid‐State Batteries by Structure‐Resolved Simulations
- 2023Oxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impactcitations
- 2022Rapid thermal processing of garnet-based composite cathodescitations
- 2022Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na$_{3.4}$ Zr$_2$Si$_{2.4}$P$_{0.6}$O$_{12}$ for Sodium Solid‐State Batteriescitations
- 2022Rapid thermal sintering of screen-printed LiCoO2 filmscitations
- 2021Optimization of sintering conditions for improved microstructural and mechanical properties of dense Ce0.8Gd0.2O2-δ-FeCo2O4 oxygen transport membranescitations
- 2021Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Compositescitations
- 2020The grain‐boundary resistance of CeO 2 ceramics: A combined microscopy‐spectroscopy‐simulation study of a dilute solutioncitations
- 2020Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheetscitations
- 2019Topological optimization of patterned silicon anode by finite element analysiscitations
- 2011Constrained sintering of glass films: Microstructure evolution assessed through synchrotron computed microtomographycitations
- 2005New considerations about the fracture mode of PZT ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Injection Molding and Near-Complete Densification of Monolithic and Al2O3 Fiber-Reinforced Ti2AlC MAX Phase Composites
Abstract
<jats:p>Near-net shape components composed of monolithic Ti2AlC and composites thereof, containing up to 20 vol.% Al2O3 fibers, were fabricated by powder injection molding. Fibers were homogeneously dispersed and preferentially oriented, due to flow constriction and shear-induced velocity gradients. After a two-stage debinding procedure, the injection-molded parts were sintered by pressureless sintering at 1250 °C and 1400 °C under argon, leading to relative densities of up to 70% and 92%, respectively. In order to achieve near-complete densification, field assisted sintering technology/spark plasma sintering in a graphite powder bed was used, yielding final relative densities of up to 98.6% and 97.2% for monolithic and composite parts, respectively. While the monolithic parts shrank isotropically, composite assemblies underwent anisotropic densification due to constrained sintering, on account of the ceramic fibers and their specific orientation. No significant increase, either in hardness or in toughness, upon the incorporation of Al2O3 fibers was observed. The 20 vol.% Al2O3 fiber-reinforced specimen accommodated deformation by producing neat and well-defined pyramidal indents at every load up to a 30 kgf (~294 N).</jats:p>