People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Konopka, Katarzyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (45/45 displayed)
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Manufacturing of Al2O3/Ni/Ti Composites Enhanced by Intermetallic Phasescitations
- 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Constructioncitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip castingcitations
- 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Castingcitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2020Manufacturing of ZrO2-Ni graded composites via centrifugal casting in the magnetic fieldcitations
- 2019The possibility of producing graded Al2O3-Mo, Al2O3-Cu, Al2O3-W composites using CSC methodcitations
- 2019Characterization of Alumina–Molybdenum Composites Prepared by Gel Casting Methodcitations
- 2019Characterization of Al2O3/Ni composites manufactured via CSC technique in magnetic fieldcitations
- 2019Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic fieldcitations
- 2018Fabrication Of Al2O3-Ni Graded Composites By Centrifugal Casting In An Ultracentrifuge
- 2018Fabrication and characterization of ZrO2/Ni compositescitations
- 2018Microstructure and hardness of Al2O3-ZrO2-Ti composites
- 2018Combined centrifugal-slip casting method used for preparation the Al2O3-Ni functionally graded compositescitations
- 2018Sintering behavior and thermal expansion of zirconia–titanium compositescitations
- 2018Zirconia–Titanium Interface in Ceramic Based Compositecitations
- 2018Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal castingcitations
- 2018Dilatrometric sintering study and characterization of alumina-nickel compositescitations
- 2017Surface layer structure of Al2O3-Ni graded composites depending on gypsum mold porosity
- 2017Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEMcitations
- 2017Al2O3/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting methodcitations
- 2017The Formation of ZrO2–Ti Composites by Spark Plasma Sinteringcitations
- 2017Al2O3 – Mo functionally graded material obtained via centrifugal slip casting
- 2017Microstructure Characterization of Composite from ZrO2 – Ti Systemcitations
- 2016QUANTITATIVE DESCRIPTION OF THE SPINEL PHASE (NiAl2O4) LOCATED INTO Al2O3 MATRIX
- 2016Fabrication of graded alumina-nickel composites by centrufugal slip casting
- 2016Structural and mechanical properties of graded composite Al <inf>2</inf> O <inf>3</inf> /Ni obtained from slurry of different solid contentcitations
- 2016Metal particles size influence on graded structure in composite Al2O3-Ni
- 2016Processing and characterization of ceramic-metal composites obtained by centrifugal slip casting
- 2016Metal particles size influence on graded structure in composite Al<inf>2</inf>O<inf>3</inf>-Nicitations
- 2016Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systemscitations
- 2016Structural and mechanical properties of graded composite Al2O3/Ni obtained from slurry of different solid content
- 2016ZrO2-Ni composites - properties and characterization
- 2016Al2O3-Ni composites produced with various rotational speed
- 2016Fabrication of ZrO2-Ti composites by slip casting methodcitations
- 2015Synthesis and Characterization of Nickel Aluminate Spinel (NiAl2O4) Prepared from the Equilibrium Mixture of Al2O3 and NiO
- 2015Forming graded microstructure of Al2O3-Ni composite by centrifugal slip casting
- 2014Morphology of nickel aluminate spinel (NiAl2O4) formed in the Al2O3-Ni composite system sintered in air
- 2014Preparation of Al2O3-Ni Cermet Composites by Aqueous Gelcastingcitations
- 2014Application of gelcasting method on ceramic-metal composite fabrication
- 2011Properties of Water-Based Slurries for Fabrication of Ceramic-Metal Composites by Slip Casting Methodcitations
- 2006Effect of elastomer structure on ceramic–elastomer composite propertiescitations
- 2004Microstructure and properties of novel ceramic–polymer compositescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sintering
Abstract
<jats:p>The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.</jats:p>