People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peplińska, Barbara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatmentcitations
- 2020Nanocomposite Gel as Injectable Therapeutic Scaffold: Microstructural Aspects and Bioactive Propertiescitations
- 2019Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticlescitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical propertiescitations
- 2018Gel with silver and ultrasmall iron oxide nanoparticles produced with Amanita muscaria extract: physicochemical characterization, microstructure analysis and anticancer propertiescitations
- 2018ZnS coating for enhanced environmental stability and improved properties of ZnO thin filmscitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationshipcitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocompositescitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
Places of action
Organizations | Location | People |
---|
article
Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatment
Abstract
<jats:p>Nanocellulose has gained increasing attention during the past decade, which is related to its unique properties and wide application. In this paper, nanocellulose samples were produced via hydrolysis with ionic liquids (1-ethyl-3-methylimidazole acetate (EmimOAc) and 1-allyl-3-methylimidazolium chloride (AmimCl)) from microcrystalline celluloses (Avicel and Whatman) subjected to enzymatic pretreatment. The obtained material was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), and thermogravimetric analysis (TG). The results showed that the nanocellulose had a regular and spherical structure with diameters of 30–40 nm and exhibited lower crystallinity and thermal stability than the material obtained after hydrolysis with Trichoderma reesei enzymes. However, the enzyme-pretreated Avicel had a particle size of about 200 nm and a cellulose II structure. A two-step process involving enzyme pretreatment and hydrolysis with ionic liquids resulted in the production of nanocellulose. Moreover, the particle size of nanocellulose and its structure depend on the ionic liquid used.</jats:p>