Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Al-Nasrawi, Suhad

  • Google
  • 3
  • 9
  • 113

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocompositescitations
  • 2021Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites16citations
  • 2018Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties97citations

Places of action

Chart of shared publication
Alshabib, Abdulrahman
1 / 4 shared
Haider, Julfikar
2 / 56 shared
Silikas, Nikolaos
3 / 93 shared
Yates, Julian
2 / 6 shared
Zidan, Saleh
2 / 5 shared
Alshame, Alshame
2 / 2 shared
Salim, Nesreen A.
1 / 2 shared
Satterthwaite, Julian D.
1 / 28 shared
Alamoush, Rasha A.
1 / 6 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Alshabib, Abdulrahman
  • Haider, Julfikar
  • Silikas, Nikolaos
  • Yates, Julian
  • Zidan, Saleh
  • Alshame, Alshame
  • Salim, Nesreen A.
  • Satterthwaite, Julian D.
  • Alamoush, Rasha A.
OrganizationsLocationPeople

article

Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites

  • Haider, Julfikar
  • Silikas, Nikolaos
  • Al-Nasrawi, Suhad
  • Yates, Julian
  • Zidan, Saleh
  • Alshame, Alshame
Abstract

<jats:p>Objectives: The objective of this study was to investigate the mechanical properties of high-impact (HI) heat-cured acrylic resin (PMMA) reinforced with silane-treated zirconia nanoparticles. Methods: Forty-five PMMA specimens reinforced with zirconia were fabricated and divided into three groups: Pure HI PMMA (control group), PMMA reinforced with 3 wt.% of non-silanised zirconia nanoparticles and PMMA reinforced with 3 wt.% of silanised zirconia nanoparticles. Silanised and non-silanised zirconia nanoparticles were analysed with Fourier Transform Infrared (FTIR) Spectroscopy. For measuring the flexural modulus and strength, a Zwick universal tester was used, and for surface hardness, a Vickers hardness tester were used. Furthermore, raw materials and fractured surfaces were analysed using Scanning Electron Microscopy (SEM). A one-way ANOVA test followed by a post-hoc Bonferroni test was employed to analyse the data. Results: The results showed that the mean values for flexural strength (83.5 ± 6.2 MPa) and surface hardness (20.1 ± 2.3 kg/mm2) of the group containing 3 wt.% treated zirconia increased significantly (p &lt; 0.05) in comparison to the specimens in the group containing non-treated zirconia (59.9 ± 7.1 MPa; 15.0 ± 0.2 kg/mm2) and the control group (72.4 ± 8.6 MPa; 17.1 ± 0.9 kg/mm2). However, the group with silanised zirconia showed an increase in flexural modulus (2313 ± 161 MPa) but was not significantly different (p &gt; 0.05) from the non-silanised group (2207 ± 252 MPa) and the control group (1971 ± 235 MPa). Conclusion: Silane-treated zirconia nano-filler improves the surface hardness and flexural strength of HI PMMA-zirconia nanocomposites, giving a potentially longer service life of the denture base.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • scanning electron microscopy
  • strength
  • flexural strength
  • hardness
  • resin
  • spectroscopy