People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jackiewicz-Rek, Wioletta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023The Influence of Selected Material Variables of Photocatalytic Cementitious Composites on the Self-Cleaning Properties and Air Purification Efficiency from NOx Pollutantscitations
- 2021Influence of the Type of Cement on the Action of the Admixture Containing Aluminum Powder citations
- 2021Investigation of Mechanical Properties, Durability and Microstructure of Low-Clinker High-Performance Concretes Incorporating Ground Granulated Blast Furnace Slag, Siliceous Fly Ash and Silica Fumecitations
- 2020The application of optical methods for the assessment of the aesthetic compatibility of architectural concrete
- 2018Analysis of the Properties of Expansive Concrete With Portland and Blast Furnace Cementcitations
- 2018Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperaturecitations
- 2017Effects of High Temperature on the Properties of High Performance Concrete (HPC)citations
- 2015Properties of Cement Mortars Modified with Ceramic Waste Fillers citations
Places of action
Organizations | Location | People |
---|
article
Influence of the Type of Cement on the Action of the Admixture Containing Aluminum Powder
Abstract
The study of the effect of cement type on the action of an admixture increasing the volume of concrete (containing aluminum powder), used in amounts of 0.5–1.5% of cement mass, was presented. The tests were carried out on cement mortars with Portland (CEM I) and ground granulated blast-furnace slag cement (CEM III). The following tests were carried out for the tested mortars: the air content in fresh mortars, compressive strength, flexural strength, increase in mortar volume, bulk density, pore structure evaluation (by the computer image analysis method) and changes in the concentration of OH− ions during the hydration of used cements. Differences in the action of the tested admixture depending on the cement used were found. To induce the expansion of CEM III mortars, a smaller amount of admixture is required than in the case of CEM I cement. Using the admixture in amounts above 1% of the cement mass causes cracks of mortars with CEM III cement due to slow hydrogen evolution, which occurs after mortar plasticity is lost. The use of an aluminum-containing admixture reduces the strength properties of the cement mortars, the effect being stronger in the case of CEM III cement. The influence of the sample molding time on the admixture action was also found.