People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ivaškė, Augusta
Vilnius Gediminas Technical University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Prolonging Bacterial Viability in Biological Concrete: Coated Expanded Clay Particles
Abstract
<jats:p>One of the biggest challenges in the development of a biological self-healing concrete is to ensure the long-term viability of bacteria that are embedded in the concrete. In the present study, a coated expanded clay (EC) is investigated for its potential use as a bacterial carrier in biological concrete. Eight different materials for coatings were selected considering cost, workability and accessibility in the construction industry. Long-term (56 days) viability analysis was conducted with a final evaluation of each coating performance. Our results indicate that healing efficiency in biological concrete specimens is strongly related to viable bacteria present in the healing agent. More viable bacteria-containing specimens exhibited a higher crack closure ratio. Our data suggest that the additional coating of EC particles improves long-term bacterial viability and, consequently, provides efficient crack healing in biological concrete.</jats:p>