People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gröger, Benjamin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Development and verification of a cure-dependent visco-thermo-elastic simulation model for predicting the process-induced surface waviness of continuous fiber reinforced thermosetscitations
- 2023Modelling of composite manufacturing processes incorporating large fibre deformations and process parameter interactions
- 2023Correction: Troschitz et al. Joining Processes for Fibre-Reinforced Thermoplastics: Phenomena and Characterisation. Materials 2022, 15, 5454
- 2022A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameterscitations
- 2022A Review on the Modeling of the Clinching Process Chain—Part II: Joining Processcitations
- 2022Review on mechanical joining by plastic deformationcitations
- 2022Development of a high-fidelity framework to describe the process-dependent viscoelasticity of a fast-curing epoxy matrix resin including testing, modelling, calibration and validationcitations
- 2022Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusionscitations
- 2022Warmforming flow pressing characteristics of continuous fibre reinforced thermoplastic compositescitations
- 2022Computed tomography investigation of the material structure in clinch joints in aluminium fibre-reinforced thermoplastic sheetscitations
- 2021Temperature dependent modelling of fibre-reinforced thermoplastic organo-sheet material for forming and joining process simulationscitations
- 2021Clinching of thermoplastic composites and metals - a comparison of three novel joining technologiescitations
- 2021Modelling of thermally supported clinching of fibre-reinforced thermoplastics: Approaches on mesoscale considering large deformations and fibre failurecitations
- 2019Experimental description of draping effects and their influence on structural behavior of fiber reinforced composites.
Places of action
Organizations | Location | People |
---|
article
Clinching of thermoplastic composites and metals - a comparison of three novel joining technologies
Abstract
<p>Clinching continuous fibre reinforced thermoplastic composites and metals is challenging due to the low ductility of the composite material. Therefore, a number of novel clinching technologies has been developed specifically for these material combinations. A systematic overview of these advanced clinching methods is given in the present paper. With a focus on process design, three selected clinching methods suitable for different joining tasks are described in detail. The clinching processes including equipment and tools, observed process phenomena and the resultant material structure are compared. Process phenomena during joining are explained in general and compared using computed tomography and micrograph images for each process. In addition the load bearing behaviour and the corresponding failure mechanisms are investigated by means of single-lap shear tests. Finally, the new joining technologies are discussed regarding application relevant criteria.</p>