People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piotrowski, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Development of Impact-Echo Multitransducer Device for Automated Concrete Homogeneity Assessmentcitations
- 2020Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortarscitations
- 2020Influence of polymer modification on the microstructure of shielding concrete citations
- 2020Relation between microstructure, technical properties and neutron radiation shielding efficiency of concretecitations
- 2018Mechanical Properties of Polymer Cement-Fiber-Reinforced Concrete (PC-FRC): Comparison Based on Experimental Studies
- 2016Bound water content measurement in cement pastes by stoichiometric and gravimetric analyses
- 2014Near-to-surface properties affecting bond strength in concrete repaircitations
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013Surface properties of concrete and criteria for adhesion of repair systems
- 2013Effect of introducing recycled polymer aggregate on the properties of C-PC compositescitations
- 2009Some theoretical and practical considerations about surface preparation of concrete and adhesion of repair systems.
Places of action
Organizations | Location | People |
---|
article
Development of Impact-Echo Multitransducer Device for Automated Concrete Homogeneity Assessment
Abstract
<jats:p>A combination of multiple nondestructive testing (NDT) methods speeds up the assessment of concrete and increases the precision. This is why the UIR-Scanner was developed at Warsaw University of Technology. The scanner uses an Impact-Echo (IE) method with a unique arrangement of multiple transducers. This paper presents the development of the IE module using numerical models validated with experimental testing. It was found that rectangular arrangement of four transducers with the impactor in the middle is optimal for quick scanning of area for faults and discontinuities, changing the method from punctual to volumetric. A numerical study of void detectability depending on its position with respect to the IE module is discussed as well. After confirmation of the findings of models using experimental tests, the module was implemented into the scanner.</jats:p>