People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alam, Parvez
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023The influence of claw morphology on gripping efficiencycitations
- 2023Tensile Properties of 3D‐Projected 4‐Polytopes: A New Class of Mechanical Metamaterialcitations
- 2021Mixed-mode interlaminar fracture toughness of glass and carbon fibre powder epoxy composites—for design of wind and tidal turbine bladescitations
- 2021Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and Tidal Turbine Bladescitations
- 2013Impact of functionalised dispersing agents on the mechanical and viscoelastic properties of pigment coatingcitations
- 2013Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materialscitations
- 2012DMTA investigation of solvents effects on viscoelastic properties of porous CaCO₃-SBR latex compositescitations
- 2012Fatigue life predictions of porous composite paper coatingscitations
- 2012Coupled spreading-fraction effects of polymer nano-binder on the network connectivity and tensile modulus of porous mineral coatingscitations
- 2011Fracture and plasticity in nano-porous particle-polymer compositescitations
- 2010Polymer chain pinning at interfaces in CaCO₃-SBR latex compositescitations
Places of action
Organizations | Location | People |
---|
article
Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and Tidal Turbine Blades
Abstract
Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination