Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lorenz, Swenja

  • Google
  • 6
  • 8
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Processing of crack-free Nickel- and Cobalt-based wear protection coatings and defined surfaces by subsequent milling processes2citations
  • 2024Alloy modification and ultrasonic-assisted milling of wear-resistant alloys with defined surfaces2citations
  • 2022Wire and Arc Additive Manufacturing of a CoCrFeMoNiV Complex Concentrated Alloy Using Metal-Cored Wire—Process, Properties, and Wear Resistance16citations
  • 2022Wire and arc additive manufacturing of a CoCrFeMoNiV complex concentrated alloy using metal-cored wire: process, properties, and Wear Resistance16citations
  • 2021Re-melting behaviour and wear resistance of vanadium carbide precipitating Cr27.5Co14Fe22Mo22Ni11.65V2.85 high entropy alloy7citations
  • 2021Re-Melting Behaviour and Wear Resistance of Vanadium Carbide Precipitating Cr27.5Co14Fe22Mo22Ni11.65V2.85 High Entropy Alloy7citations

Places of action

Chart of shared publication
Gräbner, Maraike
2 / 3 shared
Schroepfer, Dirk
1 / 12 shared
Wesling, Volker
5 / 41 shared
Treutler, Kai
5 / 31 shared
Kannengießer, Thomas
2 / 126 shared
Giese, Marcel
2 / 6 shared
Schröpfer, Dirk
1 / 40 shared
Hamje, Jens
2 / 3 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Gräbner, Maraike
  • Schroepfer, Dirk
  • Wesling, Volker
  • Treutler, Kai
  • Kannengießer, Thomas
  • Giese, Marcel
  • Schröpfer, Dirk
  • Hamje, Jens
OrganizationsLocationPeople

article

Re-Melting Behaviour and Wear Resistance of Vanadium Carbide Precipitating Cr27.5Co14Fe22Mo22Ni11.65V2.85 High Entropy Alloy

  • Lorenz, Swenja
Abstract

<jats:p>High entropy alloys (HEAs) are among of the most promising new metal material groups. The achievable properties can exceed those of common alloys in different ways. Due to the mixture of five or more alloying elements, the variety of high entropy alloys is fairly huge. The presented work will focus on some first insights on the weldability and the wear behavior of vanadium carbide precipitation Cr27.5Co14Fe22Mo22Ni11.65V2.85 HEA. The weldability should always be addressed in an early stage of any alloy design to avoid welding-related problems afterwards. The cast Cr27.5Co14Fe22Mo22Ni11.65V2.85 HEA has been remelted using a TIG welding process and the resulting microstructure has been examined. The changes in the microstructure due to the remelting process showed little influence of the welding process and no welding-related problems like hot cracks have been observed. It will be shown that vanadium carbides or vanadium-rich phases precipitate after casting and remelting in a two phased HEA matrix. The hardness of the as cast alloy is 324HV0.2 and after remelting the hardness rises to 339HV0.2. The wear behavior can be considered as comparable to a Stellite 6 cobalt base alloy as determined in an ASTM G75 test. Overall, the basic HEA design is promising due to the precipitation of vanadium carbides and should be further investigated.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • crack
  • wear resistance
  • carbide
  • hardness
  • precipitate
  • precipitation
  • casting
  • cobalt
  • vanadium