People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Köhler, D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024In-situ computed tomography and transient dynamic analysis – failure analysis of a single-lap tensile-shear test with clinch pointscitations
- 2024In-situ computed tomography analysis of the failure mechanisms of thermomechanically manufactured joints with auxiliary joining elementcitations
- 2023Comparison of ex- and in-situ investigations of clinched single-lap shear specimenscitations
- 2023Numerical and experimental investigations of piercing fibre-reinforced thermoplasticscitations
- 2022Clinching in In Situ CT—A Novel Validation Method for Mechanical Joining Processescitations
- 2022Characterisation of lateral offsets in clinch points with computed tomography and transient dynamic analysiscitations
- 2022Computed tomography investigation of the material structure in clinch joints in aluminium fibre-reinforced thermoplastic sheetscitations
- 2021A Method for Characterization of Geometric Deviations in Clinch Points with Computed Tomography and Transient Dynamic Analysiscitations
- 2021Clinching in In-situ CT – Experimental Study on Suitable Tool Materialscitations
- 2021In situ computed tomography – Analysis of a single-lap shear test with clinch pointscitations
- 2020Experimental and numerical studies on the deformation of a flexible wire in an injection moulding processcitations
- 2020Clinching in in-situ CT—A numerical study on suitable tool materialscitations
Places of action
Organizations | Location | People |
---|
article
In situ computed tomography – Analysis of a single-lap shear test with clinch points
Abstract
<p>As lightweight design gains more and more attention, time and cost-efficient joining methods such as clinching are becoming more popular. A clinch point’s quality is usually determined by ex situ destructive analyses such as microsectioning. However, these methods do not yield the detection of phenomena occurring during loading such as elastic deformations and cracks that close after unloading. Alternatively, in situ computed tomography (in situ CT) can be used to investigate the loading process of clinch points. In this paper, a method for in situ CT analysis of a single-lap shear test with clinched metal sheets is presented at the example of a clinched joint with two 2 mm thick aluminum sheets. Furthermore, the potential of this method to validate numerical simulations is shown. Since the sheets’ surfaces are locally in contact with each other, the interface between both aluminum sheets and therefore the exact contour of the joining partners is difficult to identify in CT analyses. To compensate for this, the application of copper varnish between the sheets is investigated. The best in situ CT results are achieved with both sheets treated. It showed that with this treatment, in situ CT is suitable to properly observe the three-dimensional deformation behavior and to identify the failure modes.</p>