People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gloc, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Research on Explosive Hardening of Titanium Grade 2citations
- 2023Comprehensive study upon physicochemical properties of bio-ZnO NCscitations
- 2023Residual stresses of explosively welded bimetal studied by hard X-ray diffractioncitations
- 2023Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological methodcitations
- 2023A Comprehensive Study of a Novel Explosively Hardened Pure Titanium Alloy for Medical Applications
- 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical compositioncitations
- 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resinscitations
- 2021Polyurethane Composite Foams Synthesized Using Bio-Polyols and Cellulose Fillercitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Compositescitations
- 2020New Al2O3–Cu–Ni functionally graded composites manufactured using the centrifugal slip castingcitations
- 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXenecitations
- 2019The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-compositescitations
- 2019Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding methodcitations
- 2017The Effect of Heat Treatment on the Microstructure and Properties of Explosively Welded Titanium-Steel Platescitations
- 2017Accumulation and mechanism of the fatigue damage for a nickel based superalloy
- 2016Natural fiber composites: the effect of the kind and content of filler on the dimensional and fire stability of polyolefin-based compositescitations
Places of action
Organizations | Location | People |
---|
article
A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Composites
Abstract
<jats:p>The authors of this paper use an original method of diatomaceous earth fractionation, which allows for obtaining a filler with a specific particle size distribution. The method makes it possible to separate small, disintegrated and broken diatom frustules from those which maintained their original form in diatomaceous earth. The study covers a range of tests conducted to prove that such a separated diatomic fraction (3–30 µm) shows features different from the base diatomite (from 1 to above 40 µm) used as an epoxy resin filler. We have examined the mechanical properties of a series of diatomite/resin composites, considering the weight fraction of diatoms and the parameters of the composite production process. The studied composites of Epidian 601 epoxy resin cross-linked with amine-based curing agent Z-1 contained 0 to 70% vol. of diatoms or diatomaceous earth. Samples were produced by being casted into silicone molds in vacuum degassing conditions and, alternatively, without degassing. The results have shown that the size and morphology of the filler based on diatomaceous earth affects mechanical and rheological properties of systems based on epoxy resin. Elongation at rupture and flexural stress at rupture were both raised by up to 35%, and impact strength by up to 25%.</jats:p>