People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Attin, Thomas
University of Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glasscitations
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass.citations
- 2022Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin composites ; ENEngelskEnglishImpact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin compositescitations
- 2022Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study.citations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glasscitations
- 2022Long-Term Assessment of Contemporary Ion-Releasing Restorative Dental Materials.citations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass.citations
- 2022Marginal integrity of classical and bulk-fill composite restorations in permanent and primary molars.citations
- 2021Change in Color and Gloss Parameters of Stained Monolithic Resin-Ceramic CAD/CAM Materials After Simulated Aging: An In Vitro Study.citations
- 2021Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses
- 2021Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers
- 2021Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin.citations
- 2021Effect of Varying Working Distances between Sandblasting Device and Composite Substrate Surface on the Repair Bond Strength.citations
- 2021Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers.citations
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glasscitations
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass.citations
- 2020The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites.citations
- 2020Impact of Different Etching Strategies on Margin Integrity of Conservative Composite Restorations in Demineralized Enamel.citations
- 2020Effect of Over-Etching and Prolonged Application Time of a Universal Adhesive on Dentin Bond Strength.citations
- 2020Effect of Over-Etching and Prolonged Application Time of a Universal Adhesive on Dentin Bond Strengthcitations
- 2020Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses.citations
- 2020Repolishing in situ eroded CAD/CAM restorative materials and human enamel.citations
- 2015Repairability of CAD/CAM high-density PMMA- and composite-based polymers
- 2003Effect of mineral supplements to citric acid on enamel erosion.citations
Places of action
Organizations | Location | People |
---|
article
Effect of Varying Working Distances between Sandblasting Device and Composite Substrate Surface on the Repair Bond Strength.
Abstract
This study investigates the effect of defined working distances between the tip of a sandblasting device and a resin composite surface on the composite-composite repair bond strength. Resin composite specimens (Ceram.x Spectra ST (HV); Dentsply Sirona, Konstanz, Germany) were aged by thermal cycling (5000 cycles, 5-55 °C) and one week of water storage. Mechanical surface conditioning of the substrate surfaces was performed by sandblasting with aluminum oxide particles (50 µm, 3 bar, 10 s) from varying working distances of 1, 5, 10, and 15 mm. Specimens were then silanized and restored by application of an adhesive system and repair composite material (Ceram.x Spectra ST (HV)). In the negative control group, no mechanical surface pretreatment or silanization was performed. Directly applied inherent increments served as the positive control group (<i>n</i> = 8). After thermal cycling of all groups, microtensile repair bond strength was assessed, and surfaces were additionally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The negative control group reached the significantly lowest microtensile bond strength of all groups. No significant differences in repair bond strength were observed within the groups with varying sandblasting distances. Composite surfaces sandblasted from a distance of 1 mm or 5 mm showed no difference in repair bond strength compared to the positive control group, whereas distances of 10 or 15 mm revealed significantly higher repair bond strengths than the inherent incremental bond strength (positive control group). In conclusion, all sandblasted test groups achieved similar or higher repair bond strength than the inherent incremental bond strength, indicating that irrespective of the employed working distance between the sandblasting device and the composite substrate surface, repair restorations can be successfully performed.