Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Calleja-Ochoa, Amaia

  • Google
  • 1
  • 5
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A New Approach in the Design of Microstructured Ultralight Components to Achieve Maximum Functional Performance39citations

Places of action

Chart of shared publication
López De Lacalle, L. N.
1 / 14 shared
Lamikiz Mentxaka, Aitzol
1 / 22 shared
Albizuri, Joseba
1 / 4 shared
Martinez, Silvia
1 / 2 shared
Barrio, Haizea Gonzalez
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • López De Lacalle, L. N.
  • Lamikiz Mentxaka, Aitzol
  • Albizuri, Joseba
  • Martinez, Silvia
  • Barrio, Haizea Gonzalez
OrganizationsLocationPeople

article

A New Approach in the Design of Microstructured Ultralight Components to Achieve Maximum Functional Performance

  • López De Lacalle, L. N.
  • Lamikiz Mentxaka, Aitzol
  • Calleja-Ochoa, Amaia
  • Albizuri, Joseba
  • Martinez, Silvia
  • Barrio, Haizea Gonzalez
Abstract

<jats:p>In the energy and aeronautics industry, some components need to be very light but with high strength. For instance, turbine blades and structural components under rotational centrifugal forces, or internal supports, ask for low weight, and in general, all pieces in energy turbine devices will benefit from weight reductions. In space applications, a high ratio strength/weight is even more important. Light components imply new optimal design concepts, but to be able to be manufactured is the real key enable technology. Additive manufacturing can be an alternative, applying radical new approaches regarding part design and components’ internal structure. Here, a new approach is proposed using the replica of a small structure (cell) in two or three orders of magnitude. Laser Powder Bed Fusion (L-PBF) is one of the most well-known additive manufacturing methods of functional parts (and prototypes as well), for instance, starting from metal powders of heat-resistant alloys. The working conditions for such components demand high mechanical properties at high temperatures, Ni-Co superalloys are a choice. The work here presented proposes the use of “replicative” structures in different sizes and orders of magnitude, to manufacture parts with the minimum weight but achieving the required mechanical properties. Printing process parameters and mechanical performance are analyzed, along with several examples.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • selective laser melting
  • superalloy