People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borowski, Tomasz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinerycitations
- 2022Mechanical Behavior of Nitrocarburised Austenitic Steel Coated with N-DLC by Means of DC and Pulsed Glow Dischargecitations
- 2021Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburisingcitations
- 2021Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processescitations
- 2021Formation of Nitrogen Doped Titanium Dioxide Surface Layer on NiTi Shape Memory Alloycitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditionscitations
- 2020Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316 LVM Steel Implantscitations
- 2020CORROSION RESISTANCE OF NITROGEN-DOPED DLC COATINGS PRODUCED IN GLOW DISCHARGE CONDITIONS ON NITRIDED AUSTENITIC STEELcitations
- 2019Microstructural and corrosion resistance characterisation of NiTi shape memory alloy modified at low-temperature plasma with carbon coatings produced via RFCVD and IBAD methodscitations
- 2018Influence of Sterilization and Exposure to the Ringer’s Solution on Mechanical and Physicochemical Properties of Nitrocarburized 316 LVM Steelcitations
- 2017Influence of amorphous carbon layers on tribological properties of polyetheretherketone composite in contactwith nitrided layer produced on Ti6Al4V titanium alloycitations
- 2017NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applicationscitations
- 2016Cathodic Cage Plasma Nitriding of Ti6Al4V Alloycitations
- 2016Influence of Nitrided Layer on the Properties of Carbon Coatings Produced on X105CrMo17 Steel Under DC Glow-Discharge Conditionscitations
- 2016Wpływ topografii powierzchni na odporność korozyjną stopu z pamięcią kształtu NiTi po procesie azotowania jarzeniowego w niskotemperaturowej plazmie / Influence of surface topography on the corrosion resistance of NiTi shape memory alloy nitrided at low-temperature plasma process
- 2015Surface Modification of Austenitic Steel by Various Glow-Discharge Nitriding Methodscitations
- 2011Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications
- 2011The effect of the diffusive, composite chromium nitride layers produced by a hybrid surface treatment on the corrosion behavior of AZ91D magnesium alloycitations
- 2010Modifying the structure of glow discharge nitrided layers produced on high-nickel chromium-less steel with the participation of an athermal martensitic transformationcitations
- 2009Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitridingcitations
- 2009Effect of the heating temperature on the corrosion resistance of alkali-treated titaniumcitations
Places of action
Organizations | Location | People |
---|
article
Formation of Nitrogen Doped Titanium Dioxide Surface Layer on NiTi Shape Memory Alloy
Abstract
<jats:p>NiTi shape memory alloys are increasingly being used as bone and cardiac implants. The oxide layer of nanometric thickness spontaneously formed on their surface does not sufficiently protect from nickel transition into surrounding tissues, and its presence, even in a small amount, can be harmful to the human organism. In order to limit this disadvantageous phenomenon, there are several surface engineering techniques used, including oxidation methods. Due to the usually complex shapes of implants, one of the most prospective methods is low-temperature plasma oxidation. This article presents the role of cathode sputtering in the formation of a titanium dioxide surface layer, specifically rutile. The surface of the NiTi shape memory alloy was modified using low-temperature glow discharge plasma oxidation processes, which were carried out in two variants: oxidation using an argon + oxygen (80% vol.) reactive atmosphere and the less chemically active argon + air (80% vol.), but with a preliminary cathode sputtering process in the Ar + N2 (1:1) plasma. This paper presents the structure (STEM), chemical composition (EDS, SIMS), surface topography (optical profilometer, Atomic Force Microscopy—AFM) and antibacterial properties of nanocrystalline TiO2 diffusive surface layers. It is shown that prior cathodic sputtering in argon-nitrogen plasma almost doubled the thickness of the produced nitrogen-doped titanium dioxide layers despite using air instead of oxygen. The (TiOxNy)2 diffusive surface layer showed a high level of resistance to E. coli colonization in comparison with NiTi, which indicates the possibility of using this surface layer in the modification of NiTi implants’ properties.</jats:p>