Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosa, José

  • Google
  • 3
  • 3
  • 18

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Red Y2O3:Eu-Based Electroluminescent Device Prepared by Atomic Layer Deposition for Transparent Display Applicationscitations
  • 2021Red Y2O3:Eu-Based Electroluminescent Device Prepared by Atomic Layer Deposition for Transparent Display Applications11citations
  • 2019Control of Eu Oxidation State in Y2O3−xSx:Eu Thin-Film Phosphors Prepared by Atomic Layer Deposition: A Structural and Photoluminescence Study7citations

Places of action

Chart of shared publication
Heikkilä, Mikko J.
1 / 48 shared
Merdes, Saoussen
1 / 9 shared
Sirkiä, Mika
1 / 1 shared
Chart of publication period
2022
2021
2019

Co-Authors (by relevance)

  • Heikkilä, Mikko J.
  • Merdes, Saoussen
  • Sirkiä, Mika
OrganizationsLocationPeople

article

Red Y2O3:Eu-Based Electroluminescent Device Prepared by Atomic Layer Deposition for Transparent Display Applications

  • Rosa, José
Abstract

<jats:p>Y2O3:Eu is a promising red-emitting phosphor owing to its high luminance efficiency, chemical stability, and non-toxicity. Although Y2O3:Eu thin films can be prepared by various deposition methods, most of them require high processing temperatures in order to obtain a crystalline structure. In this work, we report on the fabrication of red Y2O3:Eu thin film phosphors and multilayer structure Y2O3:Eu-based electroluminescent devices by atomic layer deposition at 300 °C. The structural and optical properties of the phosphor films were investigated using X-ray diffraction and photoluminescence measurements, respectively, whereas the performance of the fabricated device was evaluated using electroluminescence measurements. X-ray diffraction measurements show a polycrystalline structure of the films whereas photoluminescence shows emission above 570 nm. Red electroluminescent devices with a luminance up to 40 cd/m2 at a driving frequency of 1 kHz and an efficiency of 0.28 Lm/W were achieved.</jats:p>

Topics
  • impedance spectroscopy
  • photoluminescence
  • x-ray diffraction
  • thin film
  • chemical stability
  • toxicity
  • atomic layer deposition