People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rozmysłowska-Wojciechowska, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Modelling and Characterisation of Residual Stress of SiC-Ti3C2Tx MXene Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phasecitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Synthesis, characterization and biophysical evaluation of the 2D Ti2CTx MXene using 3D spheroid-type culturescitations
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
- 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXenecitations
- 2019Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activitycitations
- 20192D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapycitations
- 2019Influence of modification of Ti3C2MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plantscitations
- 2019The toxicity in vitro of titanium dioxide nanoparticles modified with noble metals on mammalian cellscitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phase
Abstract
This study presents new findings related to the incorporation of MXene phases into ceramic. Aluminium oxide and synthesised Ti3C2 were utilised as starting materials. Knowing the tendency of MXenes to oxidation and degradation, particularly at higher temperatures, structural modifications were proposed. They consisted of creating the metallic layer on the Ti3C2, by sputtering the titanium or molybdenum. To prepare the composites, powder metallurgy and spark plasma sintering (SPS) techniques were adopted. In order to evaluate the effectiveness of the applied modifications, the emphasis of the research was placed on microstructural analysis. In addition, the mechanical properties of the obtained sinters were examined. Observations revealed significant changes in the MXenes degradation process, from porous areas with TiC particles (for unmodified Ti3C2), to in situ creation of graphitic carbon (in the case of Ti3C2-Ti/Mo). Moreover, the fracture changed from purely intergranular to cracking with high participation of transgranular mode, analogously. In addition, the results obtained showed an improvement in the mechanical properties for composites with Ti/Mo modifications (an increase of 10% and 15% in hardness and fracture toughness respectively, for specimens with 0.5 wt.% Ti3C2-Mo). For unmodified Ti3C2, enormously cracked areas with spatters emerged during tests, making the measurements impossible to perform.