Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zühlke, Alexandra

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Enhancement of gingival tissue adherence of zirconia implant posts : In vitro study6citations

Places of action

Chart of shared publication
Bilotsky, Yevgen
1 / 2 shared
Gasik, Michael
1 / 46 shared
Shahramian, Khalil
1 / 3 shared
Närhi, Timo
1 / 2 shared
Kangasniemi, Ilkka
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Bilotsky, Yevgen
  • Gasik, Michael
  • Shahramian, Khalil
  • Närhi, Timo
  • Kangasniemi, Ilkka
OrganizationsLocationPeople

article

Enhancement of gingival tissue adherence of zirconia implant posts : In vitro study

  • Bilotsky, Yevgen
  • Gasik, Michael
  • Shahramian, Khalil
  • Närhi, Timo
  • Kangasniemi, Ilkka
  • Zühlke, Alexandra
Abstract

<p>Prevention of bacterial inflammation around dental implants (peri-implantitis) is one of the keys to success of the implantation and can be achieved by securing the gingival tissue-abutment interface preventing penetration of bacteria. Modern dental practice has adopted zirconia abutments in place of titanium, but the adhesion of gingival tissue to zirconia is inferior to titanium. The aim of this study was to assess and improve the adhesion of mucosal tissues to zirconia posts using sol-gel derived TiO<sub>2</sub> coating following dynamic mechanical testing. The posts were cultivated with porcine bone-gingival tissue specimens in vitro for 7 and 14 days and then subjected to dynamic mechanical analysis simulating physiological loading at 1 Hz up to 50 µm amplitude. In parallel in silico analysis of stresses and strains have been made simulating “the worst case” when the fixture fails in osseointe-gration while the abutment still holds. Results show treatment of zirconia can lead to double interface stiffness (static shear stiffness values from 5–10 to 17–23 kPa and dynamic from 20–50 to 60–125 kPa), invariant viscostiffness (from 5–35 to 45–90 kPa·s<sup>α</sup>) and material memory values (increased from 0.06–0.10 to 0.17–0.25), which is beneficial in preventing bacterial contamination in dental implants. This suggests TiO<sub>2</sub>-coated zirconia abutments may have a significant clinical benefit for prevention of the bacterial contamination.</p>

Topics
  • impedance spectroscopy
  • titanium
  • dynamic mechanical analysis