People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jakubczak, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Excellent antimicrobial and photocatalytic performance of C/GO/TiO2/Ag and C/TiO2/Ag hybrid nanocomposite beds against waterborne microorganismscitations
- 2023Waste iron as a robust and ecological catalyst for decomposition industrial dyes under UV irradiationcitations
- 2023Application of Micron-Sized Zero-Valent Iron (ZVI) for Decomposition of Industrial Amaranth Dyes
- 2023Novel photo-Fenton nanocomposite catalyst based on waste iron chips-Ti3C2T MXene for efficient water decontaminationcitations
- 2022Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene Flakes Coupling the Nanoblade Effect with ROS Generationcitations
- 2021Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganismscitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021A Review on Development of Ceramic-Graphene Based Nanohybrid Composite Systems in Biological Applicationscitations
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
Places of action
Organizations | Location | People |
---|
article
Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatment
Abstract
Point-of-use (POU) water treatment systems and devices play an essential role in limited access to sanitary safe water resources. The filtering materials applied in POU systems must effectively eliminate contaminants, be readily produced and stable, and avoid secondary contamination of the treated water. We report an innovative, 2D Ti3C2/Al2O3/Ag/Cu nanocomposite-modified filtration material with the application potential for POU water treatment. The material is characterized by improved filtration velocity relative to an unmodified reference material, effective elimination of microorganisms, and self-disinfecting potential, which afforded the collection of 99.6% of bacteria in the filter. The effect was obtained with nanocomposite levels as low as 1%. Surface oxidation of the modified material increased its antimicrobial efficiency. No secondary release of the nanocomposites into the filtrate was observed and confirmed the stability of the material and its suitability for practical application in water treatment.