Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minárik, Peter

  • Google
  • 9
  • 40
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Harmonizing microstructures and enhancing mechanical resilience : Novel powder metallurgy approach for Zn–Mg alloys2citations
  • 2024Exploring the microstructure, mechanical properties, and corrosion resistance of innovative bioabsorbable Zn-Mg-(Si) alloys fabricated via powder metallurgy techniques4citations
  • 2024Harmonizing microstructures and enhancing mechanical resilience2citations
  • 2023Ignition-resistant Mg‐2Y‐2Gd‐1Ca alloy for aviation applications13citations
  • 2023Novel Ultrafine-Grain Mg-Gd/Nd-Y-Ca Alloys with an Increased Ignition Temperature11citations
  • 2020Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging12citations
  • 2020Magnesium Reinforced with Inconel 718 Particles Prepared Ex Situ—Microstructure and Properties8citations
  • 2018Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires16citations
  • 2016Microstructure Evolution in Ultrafine-grained Magnesium Alloy AZ31 Processed by Severe Plastic Deformationcitations

Places of action

Chart of shared publication
Paulin, Irena
2 / 18 shared
Kubásek, Jiří
5 / 44 shared
Godec, Matjaž
2 / 26 shared
Boukalová, Anna
3 / 4 shared
Donik, Črtomir
3 / 26 shared
Michalcová, Alena
2 / 14 shared
Dvorský, Drahomír
3 / 18 shared
Vojtěch, Dalibor
5 / 36 shared
Nečas, David
3 / 16 shared
Pinc, Jan
1 / 16 shared
Školáková, Andrea
1 / 9 shared
Hybášek, Vojtěch
1 / 7 shared
Voňavková, Ilona
1 / 4 shared
Pokorný, Jan
1 / 2 shared
Zlámal, Martin
1 / 2 shared
Hosová, Klára
3 / 11 shared
Veselý, Josef
1 / 1 shared
Stráská, Jitka
3 / 5 shared
Král, Robert
3 / 3 shared
Čavojský, Miroslav
1 / 4 shared
Veselý, Jozef
2 / 7 shared
Šašek, Stanislav
2 / 2 shared
Krajňák, Tomᡡš
1 / 2 shared
Halmesova, Kristyna
1 / 3 shared
Škraban, Tomáš
1 / 1 shared
Németh, Gergely
3 / 7 shared
Dzugan, Jan
2 / 7 shared
Trojanova, Zuzanka
2 / 3 shared
Drozd, Zdeněk
2 / 2 shared
Lukáč, Pavel
2 / 2 shared
Seetharaman, Sankaranarayanan
1 / 6 shared
Fekete, Klaudia Horváth
1 / 4 shared
Nacházel, Jan
1 / 1 shared
Máthis, Kristián
1 / 5 shared
Procházka, Radek
1 / 1 shared
Palán, Jan
1 / 2 shared
Duchek, Michal
1 / 8 shared
Džugan, Jan
1 / 4 shared
Strásky, Josef
1 / 1 shared
Janeček, Miloš
1 / 5 shared
Chart of publication period
2024
2023
2020
2018
2016

Co-Authors (by relevance)

  • Paulin, Irena
  • Kubásek, Jiří
  • Godec, Matjaž
  • Boukalová, Anna
  • Donik, Črtomir
  • Michalcová, Alena
  • Dvorský, Drahomír
  • Vojtěch, Dalibor
  • Nečas, David
  • Pinc, Jan
  • Školáková, Andrea
  • Hybášek, Vojtěch
  • Voňavková, Ilona
  • Pokorný, Jan
  • Zlámal, Martin
  • Hosová, Klára
  • Veselý, Josef
  • Stráská, Jitka
  • Král, Robert
  • Čavojský, Miroslav
  • Veselý, Jozef
  • Šašek, Stanislav
  • Krajňák, Tomᡡš
  • Halmesova, Kristyna
  • Škraban, Tomáš
  • Németh, Gergely
  • Dzugan, Jan
  • Trojanova, Zuzanka
  • Drozd, Zdeněk
  • Lukáč, Pavel
  • Seetharaman, Sankaranarayanan
  • Fekete, Klaudia Horváth
  • Nacházel, Jan
  • Máthis, Kristián
  • Procházka, Radek
  • Palán, Jan
  • Duchek, Michal
  • Džugan, Jan
  • Strásky, Josef
  • Janeček, Miloš
OrganizationsLocationPeople

article

Strain Hardening in an AZ31 Alloy Submitted to Rotary Swaging

  • Halmesova, Kristyna
  • Minárik, Peter
  • Škraban, Tomáš
  • Németh, Gergely
  • Dzugan, Jan
  • Trojanova, Zuzanka
  • Drozd, Zdeněk
  • Lukáč, Pavel
Abstract

<jats:p>An extruded magnesium AZ31 magnesium alloy was processed by rotary swaging (RSW) and then deformed by tension and compression at room temperature. The work-hardening behaviour of 1–5 times swaged samples was analysed using Kocks-Mecking plots. Accumulation of dislocations on dislocation obstacles and twin boundaries is the deciding factor for the strain hardening. Profuse twinning in compression seems to be the reason for the higher hardening observed during compression. The main softening mechanism is apparently the cross-slip between the pyramidal planes of the second and first order. A massive twinning observed at the deformation beginning influences the Hall-Petch parameters.</jats:p>

Topics
  • impedance spectroscopy
  • Magnesium
  • magnesium alloy
  • Magnesium
  • dislocation