Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zayoud, Fares

  • Google
  • 1
  • 3
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars32citations

Places of action

Chart of shared publication
Szmigiera, Elżbieta Danuta
1 / 6 shared
Urbański, Marek
1 / 8 shared
Protchenko, Kostiantyn
1 / 7 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Szmigiera, Elżbieta Danuta
  • Urbański, Marek
  • Protchenko, Kostiantyn
OrganizationsLocationPeople

article

Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars

  • Szmigiera, Elżbieta Danuta
  • Urbański, Marek
  • Protchenko, Kostiantyn
  • Zayoud, Fares
Abstract

The use of sustainable materials is a challenging issue for the construction industry; thus, Fiber Reinforced Polymers (FRP) is of interest to civil and structural engineers for their lightweight and high-strength properties. The paper describes the results of tensile and shear strength testing of Basalt FRP (BFRP) and Hybrid FRP (HFRP) bars. The combination of carbon fibers and basalt fibers leads to a more cost-efficient alternative to Carbon FRP (CFRP) and a more sustainable alternative to BFRP. The bars were subjected to both tensile and shear strength testing in order to investigate their structural behavior and find a correlation between the results. The results of the tests done on BFRP and HFRP bars showed that the mechanical properties of BFRP bars were lower than for HFRP bars. The maximum tensile strength obtained for a BFRP bar with a diameter of 10 mm was equal to approximately 1150 MPa, whereas for HFRP bars with a diameter of 8 mm, it was higher, approximately 1280 MPa. Additionally, better results were obtained for HFRP bars during shear testing; the average maximum shear stress was equal to 214 MPa, which was approximately 22% higher than the average maximum shear stress obtained for BFRP bars. However, HFRP bars exhibited the lowest shear strain of 57% that of BFRP bars. This confirms the effectiveness of using HFRP bars as a replacement for less rigid BFRP bars. It is worth mentioning that after obtaining these results, shear testing can be performed instead of tensile testing for future studies, which is less complicated and takes less time to prepare than tensile testing.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • laser emission spectroscopy
  • strength
  • tensile strength