People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Małek, Marcin
Military University of Technology in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023A Comparative Investigation of Properties of Metallic Parts Additively Manufactured through MEX and PBF-LB/M Technologiescitations
- 2023Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Studycitations
- 2022Bending Strength of Polyamide-Based Composites Obtained during the Fused Filament Fabrication (FFF) Processcitations
- 2021The Influence of the Microstructure of Ceramic-Elastomer Composites on Their Energy Absorption Capabilitycitations
- 2020The Influence of Heat Treatment on Low Cycle Fatigue Properties of Selectively Laser Melted 316L Steelcitations
- 2019Research on microstructure and mechanical properties of explosively welded stainless steel/commercially pure Ti platecitations
Places of action
Organizations | Location | People |
---|
article
The Influence of Heat Treatment on Low Cycle Fatigue Properties of Selectively Laser Melted 316L Steel
Abstract
<jats:p>The paper is a project continuation of the examination of the additive-manufactured 316L steel obtained using different process parameters and subjected to different types of heat treatment. This work contains a significant part of the research results connected with material analysis after low-cycle fatigue testing, including fatigue calculations for plastic metals based on the Morrow equation and fractures analysis. The main aim of this research was to point out the main differences in material fracture directly after the process and analyze how heat treatment affects material behavior during low-cycle fatigue testing. The mentioned tests were run under conditions of constant total strain amplitudes equal to 0.30%, 0.35%, 0.40%, 0.45%, and 0.50%. The conducted research showed different material behaviors after heat treatment (more similar to conventionally made material) and a negative influence of precipitation heat treatment of more porous additive manufactured materials during low-cycle fatigue testing.</jats:p>