Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sura, Nika

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316 LVM Steel Implants7citations

Places of action

Chart of shared publication
Ceglarska, Magdalena
1 / 2 shared
Tarnowski, Michał
1 / 20 shared
Kajzer, Wojciech
1 / 3 shared
Pilecki, Zbigniew
1 / 1 shared
Borowski, Tomasz
1 / 22 shared
Kajzer, Anita
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Ceglarska, Magdalena
  • Tarnowski, Michał
  • Kajzer, Wojciech
  • Pilecki, Zbigniew
  • Borowski, Tomasz
  • Kajzer, Anita
OrganizationsLocationPeople

article

Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316 LVM Steel Implants

  • Ceglarska, Magdalena
  • Tarnowski, Michał
  • Kajzer, Wojciech
  • Pilecki, Zbigniew
  • Sura, Nika
  • Borowski, Tomasz
  • Kajzer, Anita
Abstract

Harmful lesions occur in the body around multielement stabilisers made of AISI 316 LVM (Low Vacuum Melted) steel, caused by products of pitting, fretting or crevice corrosion. Preventing the effect is possible by modifying the surface of the steel implants. Therefore, the goal of the paper is the comparison of the mechanical and physiochemical properties of plates for treating deformations of the anterior chest wall made of AISI 316 LVM steel, subjected to diffusion and sterilisation processes and exposed to Ringer’s solution. The surface of the implants was subjected to electrochemical polishing, chemical passivation and, in order to modify their properties, nitrocarburised and nitrided diffusion layers were created on selected stabilisers under glow discharge conditions with the use of an active screen at a temperature of 420 °C, over 60 min. The conducted studies involved the examination of the microstructure of the formed layers, surface roughness testing, analysis of contact angles and surface free energy, examination of resistance to pitting and crevice corrosion and examination of nanohardness. On the basis of the results of the conducted studies, it was established that the most advantageous set of properties after sterilisation and exposure to Ringer’s solution was displayed by implants with a formed diffusion nitrocarburised layer.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • steel
  • polishing
  • crevice corrosion